ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Machine Learning and Analytics in Healthcare Systems: Principles and Applications

دانلود کتاب یادگیری ماشین و تجزیه و تحلیل در سیستم های مراقبت های بهداشتی: اصول و کاربردها

Machine Learning and Analytics in Healthcare Systems: Principles and Applications

مشخصات کتاب

Machine Learning and Analytics in Healthcare Systems: Principles and Applications

ویرایش:  
نویسندگان: , , ,   
سری: Green Engineering and Technology: Concepts and Applications 
ISBN (شابک) : 2021000895, 9781003185246 
ناشر: CRC Press 
سال نشر: 2021 
تعداد صفحات: [275] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 46 Mb 

قیمت کتاب (تومان) : 39,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Machine Learning and Analytics in Healthcare Systems: Principles and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب یادگیری ماشین و تجزیه و تحلیل در سیستم های مراقبت های بهداشتی: اصول و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب یادگیری ماشین و تجزیه و تحلیل در سیستم های مراقبت های بهداشتی: اصول و کاربردها

اندیشیدن به آینده جوامع دیجیتال با ابزار سنت‌های اومانیستی ما: این جاه‌طلبی این کتاب است. اما چگونه می‌توانیم یک انسان‌گرایی دیجیتالی ایجاد کنیم که نیازمندی‌های رسانه‌های جدید را که نمی‌توان در فضا ثابت کرد یا در زمان تثبیت کرد، یکپارچه کرد؟ علیرغم یک مؤلفه فنی قوی، که باید مورد سؤال و نظارت دائمی قرار گیرد زیرا عامل اراده اقتصادی است، فناوری دیجیتال به یک «تمدن» تبدیل شده است. در واقع، فناوری دیجیتال دیدگاه ما را در مورد اشیا، روابط و ارزش ها تغییر می دهد. کلود لوی اشتراوس «سه اومانیسم» را در تاریخ غرب به رسمیت شناخت: اومانیسم اشرافی رنسانس، اومانیسم بورژوایی و عجیب و غریب قرن نوزدهم و اومانیسم دموکراتیک قرن بیستم. میلاد دوئیحی در این کتاب «اومانیسم چهارم» را مطرح می‌کند، انسان‌گرایی دیجیتالی قرن آغازین. این مقاله درکی از مهارت های جدید، فنی و فرهنگی، آینده مجازی ما را باز می کند.


توضیحاتی درمورد کتاب به خارجی

Penser l'avenir des sociétés numériques avec les outils de nos traditions humanistes : telle est l'ambition de ce livre. Mais comment créer un humanisme numérique qui aurait intégré les exigences de nouveaux supports que rien ne permet de fixer dans l'espace ni de stabiliser dans le temps ? Malgré une forte composante technique, qu'il faut interroger et sans cesse surveiller car elle est l'agent d'une volonté économique, le numérique est devenu une "civilisation". En effet, le numérique modifie nos regards sur les objets, les relations et les valeurs. Claude Lévi-Strauss a reconnu "trois humanismes" dans l'histoire de l'Occident : un humanisme aristocratique de la Renaissance, un humanisme bourgeois et exotique du XIXe siècle et un humanisme démocratique du XXe siècle. Dans ce livre, Milad Doueihi propose un "quatrième humanisme", celui de ce siècle débutant, l'humanisme numérique. Cet essai ouvre à la compréhension des nouvelles compétences, techniques et culturelles, de notre avenir virtuel.



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Table of Contents
Preface
Editors
Contributors
Chapter 1 Data Analytics in Healthcare Systems – Principles, Challenges, and Applications
	1.1 Introduction
		1.1.1 Data Analytics in Healthcare
		1.1.2 Characteristics of Big Data
	1.2 Architectural Framework
		1.2.1 Data Aggregation
		1.2.2 Data Processing
		1.2.3 Data Visualization
	1.3 Data Analytics Tools in Healthcare
		1.3.1 Data Integration Tools
		1.3.2 Searching and Processing Tools
		1.3.3 Machine Learning Tools
		1.3.4 Real-Time and Streaming Data Processing Tools
		1.3.5 Visual Data Analytical Tools
	1.4 Data Analytics Techniques in Healthcare
	1.5 Applications of Data Analytics in Healthcare
	1.6 Challenges Associated with Healthcare Data
	1.7 Conclusion
	References
Chapter 2 Systematic View and Impact of Machine Learning in Healthcare Systems
	2.1 Introduction
	2.2 Applied ML in Health Care
		2.2.1 ML-Assisted Radiology and Pathology
			2.2.1.1 ML For Increased Imaging Precision in Radiology
		2.2.2 Identification of Rare Diseases
			2.2.2.1 Regular Challenges
		2.2.3 ML in Mental Health Care
	2.3 Major Applications
		2.3.1 Personalized Medicine
			2.3.1.1 Viable Personalized Medicine
		2.3.2 Autonomous Robotic Surgery
	2.4 ML in Cancer Diagnostics
		2.4.1 ML and Cancer Imaging
			2.4.1.1 Convolutional Neural Network (CNN) Imaging
			2.4.1.2 Radiographic Imaging
			2.4.1.3 Digital Pathology and Image Specimens
			2.4.1.4 Image Database
		2.4.2 Cancer Stage Prediction
			2.4.2.1 Determination of Tumor Aggression Score (TAS)
			2.4.2.2 AI Analysis of ML Models
		2.4.3 Neural Network for Treatment Procedure
			2.4.3.1 Classification and Prediction Modeling
			2.4.3.2 Data Collection
		2.4.4 Prediction of Cancer Susceptibility
	2.5 Conclusion
	References
Chapter 3 Foundation of Machine Learning-Based Data Classification Techniques for Health Care
	3.1 Introduction
	3.2 Machine Learning Techniques
	3.3 Supervised Learning
	3.4 Classification
		3.4.1 Decision Tree
		3.4.2 Random Forest
		3.4.3 KNN Algorithm
		3.4.4 Naïve Bayes
		3.4.5 Neural Networks
			3.4.5.1 Back Propagation in ANN
		3.4.6 Support Vector Machines (SVM)
			3.4.6.1 Advantages of SVM Classifiers
			3.4.6.2 Disadvantages of SVM Classifiers
			3.4.6.3 Applications of SVM
	3.5 Regression
		3.5.1 Logistic Regression
	3.6 Unsupervised Learning
	3.7 Clustering
		3.7.1 K-Means Clustering
	3.8 Applications of Machine Learning in Healthcare
		3.8.1 Patterns of Imaging Analytics
		3.8.2 Personalized Treatment
		3.8.3 Discovery and Manufacturing of Drugs
		3.8.4 Identifying Diseases and Diagnosis
		3.8.5 Robotic Surgery
		3.8.6 Clinical Trial Research
		3.8.7 Predicting Epidemic Outbreaks
		3.8.8 Improved Radiotherapy
		3.8.9 Maintaining Healthcare Records
	3.9 Conclusion
	References
Chapter 4 Deep Learning for Computer-Aided Medical Diagnosis
	4.1 Introduction
	4.2 Computer-Aided Medical Diagnosis
		4.2.1 Radiography
		4.2.2 Magnetic Resonance Imaging (MRI)
		4.2.3 Ultrasound
		4.2.4 Thermography
		4.2.5 Nuclear Medicine Imaging (NMI)
	4.3 Deep Learning in Health Care
		4.3.1 Deep Learning Neural Network
		4.3.2 Imaging Analytics and Diagnostics
		4.3.3 Natural Language Processing in Health Care
		4.3.4 Drug Discovery and Precision Medicine
		4.3.5 Clinical Decision Support Systems
	4.4 Deep Learning vs CAMD
		4.4.1 CAMD for Neurodegenerative Diseases
		4.4.2 Deep Learning and Regularization Techniques
			4.4.2.1 Multi-Task Learning
			4.4.2.2 Convolutional Neural Network
			4.4.2.3 Transfer Learning
		4.4.3 CAMD and Big Medical Data
		4.4.4 Deep Learning for Cancer Location
	4.5 DL Applications in Health Care
		4.5.1 Electronic Health Records
		4.5.2 Drug Discovery
		4.5.3 Medical Imaging
			4.5.3.1 Image Analysis to Detect Tumors
			4.5.3.2 Detecting Cancerous Cells
			4.5.3.3 Detecting Osteoarthritis from an MRI Scan
		4.5.4 Genome
		4.5.5 Automatic Treatment
	4.6 Major Challenges
		4.6.1 Limited Dataset
		4.6.2 Privacy and Legal Issues
		4.6.3 Process Standardization
	4.7 Conclusion
	References
Chapter 5 Machine Learning Classifiers in Health Care
	5.1 Introduction
		5.1.1 Supervised learning
		5.1.2 Unsupervised learning
		5.1.3 Semi-supervised learning
		5.1.4 Reinforcement learning
	5.2 Decision Making in Health Care
		5.2.1 Introduction
		5.2.2 Clinical Decision Making
	5.3 Machine Learning in Health Care
		5.3.1 Introduction
		5.3.2 Opportunities for ML in Health Care
	5.4 Data Classification Techniques in Health Care
		5.4.1 Support Vector Machine
		5.4.2 Logistic Regression
		5.4.3 Artificial Neural Network
		5.4.4 Random Forest
		5.4.5 Decision Tree
		5.4.6 K-Nearest Neighbor
		5.4.7 Naïve Bayes
	5.5 Case Studies
		5.5.1 Brain Tumor Classification
			5.5.1.1 MRI Brain Image Acquisitions
			5.5.1.2 Preprocessing
			5.5.1.3 Convolutional Neural Network (CNN) Algorithm
			5.5.1.4 Training of the Network
			5.5.1.5 Validation of Data Set
			5.5.1.6 Results
		5.5.2 Breast Cancer Classification
		5.5.3 Classification of Chronic Kidney Disease
		5.5.4 Classification of COVID-19
	5.6 Conclusion
	References
Chapter 6 Machine Learning Approaches for Analysis in Healthcare Informatics
	6.1 Introduction
		6.1.1 Learning
	6.2 Machine Learning
		6.2.1 Types of Machine Learning
		6.2.2 Different Algorithms
	6.3 Supervised Learning
		6.3.1 Regression
		6.3.2 Classification
	6.4 Unsupervised Learning
		6.4.1 K-means Algorithm
		6.4.2 Self-Organizing Feature Map (SOM)
	6.5 Evolutionary Learning
		6.5.1 Genetic Algorithm
			6.5.1.1 Establishing the Genetic Algorithm
	6.6 Reinforcement Learning
		6.6.1 Markov Decision Process
	6.7 Healthcare Informatics
		6.7.1 Health Care
		6.7.2 Applications
	6.8 Analysis and Diagnosis
		6.8.1 Analysis
		6.8.2 Diagnosis
	6.9 Machine Learning in Health Care
		6.9.1 Overview
		6.9.2 Types
		6.9.3 Applications
		6.9.4 Modules
	6.10 Conclusion
	References
Chapter 7 Prediction of Epidemic Disease Outbreaks, Using Machine Learning
	7.1 Introduction
	7.2 Predictive Analytics
		7.2.1 Role of Predictive Analytics in Healthcare
	7.3 Machine Learning
		7.3.1 Machine Learning Process
			7.3.1.1 Main Steps in Machine Learning Process
		7.3.2 Types of Machine Learning Algorithms
			7.3.2.1 Supervised Learning
			7.3.2.2 Unsupervised Learning
			7.3.2.3 Semi-Supervised Learning
			7.3.2.4 Reinforcement Learning
	7.4 Machine Learning Models for Predicting an Epidemic Disease Outbreak
		7.4.1 Collection and Cleaning of Epidemic Disease Outbreak Data
			7.4.1.1 Data Collection
			7.4.1.2 Data Cleaning
		7.4.2 Training the Model and Making Predictions, Using Machine Learning Predictive Analytics
			7.4.2.1 Training the Model
			7.4.2.2 Prediction
		7.4.3 Results Visualization and Communication
	7.5 Epidemic Disease Dissemination Factors
		7.5.1 Physical Network
			7.5.1.1 Population Density
			7.5.1.2 Hotspots
		7.5.2 Geographical Locations
			7.5.2.1 Climatic Factors
			7.5.2.2 Geodemographic Factors
		7.5.3 Clinical Studies
			7.5.3.1 Clinical Case Classification
			7.5.3.2 Vaccination Tracking
		7.5.4 Social Media
			7.5.4.1 Geo-Mapping
	7.6 Machine Learning Algorithms for Disease Epidemic Prediction
		7.6.1 Support Vector Machine (SVM)
		7.6.2 Decision Tree
		7.6.3 Naïve Bayes
		7.6.4 Artificial Neural Networks (ANNs)
		7.6.5 K-Means Clustering
	7.7 Existing Research on Machine Learning Application in Epidemic Prediction
	7.8 Real-Time Epidemic Disease Prediction: Challenges and Opportunities
		7.8.1 Challenges
		7.8.2 Opportunities and Advances
	7.9 Relevance of Machine Learning to the Novel Coronavirus (COVID-19) Outbreak
		7.9.1 Design and Development of Vaccines and Drugs
		7.9.2 Predicting the Spread of Virus, Using Social Media Platforms
		7.9.3 Diagnosing Virus Infection via Medical Images
		7.9.4 AI-Based Chatbots for Diagnosis
		7.9.5 Smartphone Application Developments
	References
Chapter 8 Machine Learning–Based Case Studies for Healthcare Analytics: Electronic Health Records, Smart Health Monitoring, Disease Prediction, Precision Medicine, and Clinical Support Systems
	8.1 Introduction
	8.2 Electronic Health Records
		8.2.1 Supervised Machine Learning with EHR in Healthcare
		8.2.2 Semi-Supervised Machine Learning with EHRs in Health Care
		8.2.3 Unsupervised Machine Learning with EHR in Health Care
	8.3 Smart Health Monitoring
	8.4 Disease Prediction
		8.4.1 Predicting the Presence of Heart Diseases
	8.5 Precision Medicine
	8.6 Clinical Decision Support System
		8.6.1 Smart CDSS Architecture
	8.7 Key Challenges
	8.8 Conclusion and Future Directions
	References
Chapter 9 Applications of Computational Methods and Modeling in Drug Delivery
	9.1 Introduction
	9.2 Computer-Aided Design for Formulation
		9.2.1 Advantages of CADD
		9.2.2 CADD Approaches
			9.2.2.1 Structure-Based Drug Design (SBDD)
			9.2.2.2 Ligand-Based Drug Design
	9.3 Molecular Dynamics
	9.4 Molecular Docking
		9.4.1 Application of Docking
			9.4.1.1 Hit Identification
			9.4.1.2 Lead Optimization
			9.4.1.3 Bioremediation Protein
	9.5 Advances in Deep Learning Approaches
		9.5.1 Artificial Neural Network
			9.5.1.1 Preformulation
			9.5.1.2 ANN for Structure Retention Relationship
			9.5.1.3 Pharmaceutical Formulation Optimization
			9.5.1.4 In-Vitro/In-Vivo Correlations
			9.5.1.5 ANN in Quality Structure–Activity Relationships
			9.5.1.6 ANN in Proteomics and Genomics
			9.5.1.7 ANN in Pharmacokinetics
			9.5.1.8 ANN in the Permeability of Skin and Blood Brain Barrier
			9.5.1.9 Diagnosis of Disease
		9.5.2 Convolutional Neural Networks (CNN)
	9.6 Application of Computer-Aided Techniques to Pharmaceutical Emulsion Development
	9.7 Application of Computer-Aided Techniques to the Microemulsion Drug Carrier Development
	9.8 Applications of Multiscale Methods in Drug Discovery
		9.8.1 Approaches of Multiscale Modeling
			9.8.1.1 Cardiac Modeling Molecular Dynamics
			9.8.1.2 Network Biology and Cancer Modeling
	9.9 Accelerated Drug Development by Machine Learning Methods
	9.10 Conclusion
	References
Chapter 10 Healthcare Data Analytics Using Business Intelligence Tool
	10.1 Introduction: Big Data
	10.2 Data Collection
		10.2.1 Electronic Health Records (EHR)
		10.2.2 Laboratory and Diagnostic Reports
		10.2.3 Prescriptions
		10.2.4 Forms Filled By Patients
	10.3 Data Pre-Processing
		10.3.1 Data Selection
		10.3.2 Data Cleansing
		10.3.3 Data Conversion/Transformation
		10.3.4 Data Integration
	10.4 Data Analytics and BI
		10.4.1 Data Source Identification
		10.4.2 Data Staging
		10.4.3 Data Warehouse/Mart
		10.4.4 Data Analysis
		10.4.5 Visualization and Reporting
		10.4.6 Decision Making
	10.5 Business Intelligence Tools
		10.5.1 Introduction to Power-BI
		10.5.2 Results and Discussion
			10.5.2.1 Getting Started with Power-BI
			10.5.2.2 Working with Multiple Data Sources
			10.5.2.3 Creation and Sharing of Dashboard
		10.5.3 Recommender System
	10.6 Findings from EHR Records, Using Machine Learning Algorithms
		10.6.1 Descriptive Analytics
		10.6.2 Predictive Analytics and Insights
	10.7 Conclusion
	References
Chapter 11 Machine Learning-Based Data Classification Techniques in Healthcare Using Massive Online Analysis Framework
	11.1 Introduction
		11.1.1 Disease Identification and Diagnosis
		11.1.2 Drug Discovery
		11.1.3 Medical Imaging
		11.1.4 Personalized Medicine
		11.1.5 Smart Health Records
		11.1.6 Disease Prediction
	11.2 Types of Healthcare Data
		11.2.1 Clinical Data
		11.2.2 Sensor Data
		11.2.3 Omics Data
	11.3 Time-Series Data in Healthcare
		11.3.1 Time-Series Analysis
	11.4 Machine Learning Algorithms on Classification Tasks
		11.4.1 Classification
		11.4.2 Classification Model
		11.4.3 Binary Classification
		11.4.4 Multi-Class Classification
		11.4.5 Multi-Label Classification
		11.4.6 Imbalanced Classification
	11.5 Massive Online Analysis (MOA) Framework for Time-Series Data
		11.5.1 Setting the Environment
			11.5.1.1 Upload Dataset or Generating Synthetic Dataset
			11.5.1.2 Converting CSV File to .arff File Format
		11.5.2 Data Generator
		11.5.3 Learning Algorithms
		11.5.4 Evaluation Methods
			11.5.4.1 Holdout Estimation Method
			11.5.4.2 Prequential or Interleaved Test-Then-Train Estimation Method
			11.5.4.3 Evaluation Performance Metrics
		11.5.5 Discussions on Results
	11.6 Laboratory Exercise and Solutions
	11.7 Conclusion
	References
Chapter 12 Prediction of Coronavirus (COVID-19) Disease Health Monitoring with Clinical Support System and Its Objectives
	12.1 Introduction
	12.2 History of COVID-19
		12.2.1 Coronavirus
		12.2.2 Global Health Security
		12.2.3 Types of Coronavirus in Human Beings
			12.2.3.1 General Coronavirus in Human Beings
			12.2.3.2 Other Human Coronaviruses
			12.2.3.3 SARS-CoV (Severe Acute Respiratory Syndrome Coronavirus)
			12.2.3.4 MERS-CoV (Middle East Respiratory Syndrome Coronavirus)
			12.2.3.5 SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2)
	12.3 Inter-Relations between Artificial Intelligence, Machine Learning, and Deep Learning
		12.3.1 Machine Learning
			12.3.1.1 Problem Types Solved through Machine Learning
			12.3.1.2 Types of Machine Learning Algorithms
		12.3.2 Machine Learning Workflow
			12.3.2.1 Smart Health Monitoring System
			12.3.2.2 Electronic Health Records (Electronic Medical Records)
			12.3.2.3 Manipulation of Supervised Concern and the Incorporated Delivery Scheme
			12.3.2.4 Functional Operation of an Electronic Health Record System
			12.3.2.5 Inquiry and Inspection Systems
			12.3.2.6 Medical Care
			12.3.2.7 Experimental Study
	12.4 Conclusion
	References
Index




نظرات کاربران