دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Himani Bansal, Balamurugan Balusamy, T. Poongodi, Firoz Khan KP سری: Green Engineering and Technology: Concepts and Applications ISBN (شابک) : 2021000895, 9781003185246 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: [275] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 46 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Machine Learning and Analytics in Healthcare Systems: Principles and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشین و تجزیه و تحلیل در سیستم های مراقبت های بهداشتی: اصول و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اندیشیدن به آینده جوامع دیجیتال با ابزار سنتهای اومانیستی ما: این جاهطلبی این کتاب است. اما چگونه میتوانیم یک انسانگرایی دیجیتالی ایجاد کنیم که نیازمندیهای رسانههای جدید را که نمیتوان در فضا ثابت کرد یا در زمان تثبیت کرد، یکپارچه کرد؟ علیرغم یک مؤلفه فنی قوی، که باید مورد سؤال و نظارت دائمی قرار گیرد زیرا عامل اراده اقتصادی است، فناوری دیجیتال به یک «تمدن» تبدیل شده است. در واقع، فناوری دیجیتال دیدگاه ما را در مورد اشیا، روابط و ارزش ها تغییر می دهد. کلود لوی اشتراوس «سه اومانیسم» را در تاریخ غرب به رسمیت شناخت: اومانیسم اشرافی رنسانس، اومانیسم بورژوایی و عجیب و غریب قرن نوزدهم و اومانیسم دموکراتیک قرن بیستم. میلاد دوئیحی در این کتاب «اومانیسم چهارم» را مطرح میکند، انسانگرایی دیجیتالی قرن آغازین. این مقاله درکی از مهارت های جدید، فنی و فرهنگی، آینده مجازی ما را باز می کند.
Penser l'avenir des sociétés numériques avec les outils de nos traditions humanistes : telle est l'ambition de ce livre. Mais comment créer un humanisme numérique qui aurait intégré les exigences de nouveaux supports que rien ne permet de fixer dans l'espace ni de stabiliser dans le temps ? Malgré une forte composante technique, qu'il faut interroger et sans cesse surveiller car elle est l'agent d'une volonté économique, le numérique est devenu une "civilisation". En effet, le numérique modifie nos regards sur les objets, les relations et les valeurs. Claude Lévi-Strauss a reconnu "trois humanismes" dans l'histoire de l'Occident : un humanisme aristocratique de la Renaissance, un humanisme bourgeois et exotique du XIXe siècle et un humanisme démocratique du XXe siècle. Dans ce livre, Milad Doueihi propose un "quatrième humanisme", celui de ce siècle débutant, l'humanisme numérique. Cet essai ouvre à la compréhension des nouvelles compétences, techniques et culturelles, de notre avenir virtuel.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1 Data Analytics in Healthcare Systems – Principles, Challenges, and Applications 1.1 Introduction 1.1.1 Data Analytics in Healthcare 1.1.2 Characteristics of Big Data 1.2 Architectural Framework 1.2.1 Data Aggregation 1.2.2 Data Processing 1.2.3 Data Visualization 1.3 Data Analytics Tools in Healthcare 1.3.1 Data Integration Tools 1.3.2 Searching and Processing Tools 1.3.3 Machine Learning Tools 1.3.4 Real-Time and Streaming Data Processing Tools 1.3.5 Visual Data Analytical Tools 1.4 Data Analytics Techniques in Healthcare 1.5 Applications of Data Analytics in Healthcare 1.6 Challenges Associated with Healthcare Data 1.7 Conclusion References Chapter 2 Systematic View and Impact of Machine Learning in Healthcare Systems 2.1 Introduction 2.2 Applied ML in Health Care 2.2.1 ML-Assisted Radiology and Pathology 2.2.1.1 ML For Increased Imaging Precision in Radiology 2.2.2 Identification of Rare Diseases 2.2.2.1 Regular Challenges 2.2.3 ML in Mental Health Care 2.3 Major Applications 2.3.1 Personalized Medicine 2.3.1.1 Viable Personalized Medicine 2.3.2 Autonomous Robotic Surgery 2.4 ML in Cancer Diagnostics 2.4.1 ML and Cancer Imaging 2.4.1.1 Convolutional Neural Network (CNN) Imaging 2.4.1.2 Radiographic Imaging 2.4.1.3 Digital Pathology and Image Specimens 2.4.1.4 Image Database 2.4.2 Cancer Stage Prediction 2.4.2.1 Determination of Tumor Aggression Score (TAS) 2.4.2.2 AI Analysis of ML Models 2.4.3 Neural Network for Treatment Procedure 2.4.3.1 Classification and Prediction Modeling 2.4.3.2 Data Collection 2.4.4 Prediction of Cancer Susceptibility 2.5 Conclusion References Chapter 3 Foundation of Machine Learning-Based Data Classification Techniques for Health Care 3.1 Introduction 3.2 Machine Learning Techniques 3.3 Supervised Learning 3.4 Classification 3.4.1 Decision Tree 3.4.2 Random Forest 3.4.3 KNN Algorithm 3.4.4 Naïve Bayes 3.4.5 Neural Networks 3.4.5.1 Back Propagation in ANN 3.4.6 Support Vector Machines (SVM) 3.4.6.1 Advantages of SVM Classifiers 3.4.6.2 Disadvantages of SVM Classifiers 3.4.6.3 Applications of SVM 3.5 Regression 3.5.1 Logistic Regression 3.6 Unsupervised Learning 3.7 Clustering 3.7.1 K-Means Clustering 3.8 Applications of Machine Learning in Healthcare 3.8.1 Patterns of Imaging Analytics 3.8.2 Personalized Treatment 3.8.3 Discovery and Manufacturing of Drugs 3.8.4 Identifying Diseases and Diagnosis 3.8.5 Robotic Surgery 3.8.6 Clinical Trial Research 3.8.7 Predicting Epidemic Outbreaks 3.8.8 Improved Radiotherapy 3.8.9 Maintaining Healthcare Records 3.9 Conclusion References Chapter 4 Deep Learning for Computer-Aided Medical Diagnosis 4.1 Introduction 4.2 Computer-Aided Medical Diagnosis 4.2.1 Radiography 4.2.2 Magnetic Resonance Imaging (MRI) 4.2.3 Ultrasound 4.2.4 Thermography 4.2.5 Nuclear Medicine Imaging (NMI) 4.3 Deep Learning in Health Care 4.3.1 Deep Learning Neural Network 4.3.2 Imaging Analytics and Diagnostics 4.3.3 Natural Language Processing in Health Care 4.3.4 Drug Discovery and Precision Medicine 4.3.5 Clinical Decision Support Systems 4.4 Deep Learning vs CAMD 4.4.1 CAMD for Neurodegenerative Diseases 4.4.2 Deep Learning and Regularization Techniques 4.4.2.1 Multi-Task Learning 4.4.2.2 Convolutional Neural Network 4.4.2.3 Transfer Learning 4.4.3 CAMD and Big Medical Data 4.4.4 Deep Learning for Cancer Location 4.5 DL Applications in Health Care 4.5.1 Electronic Health Records 4.5.2 Drug Discovery 4.5.3 Medical Imaging 4.5.3.1 Image Analysis to Detect Tumors 4.5.3.2 Detecting Cancerous Cells 4.5.3.3 Detecting Osteoarthritis from an MRI Scan 4.5.4 Genome 4.5.5 Automatic Treatment 4.6 Major Challenges 4.6.1 Limited Dataset 4.6.2 Privacy and Legal Issues 4.6.3 Process Standardization 4.7 Conclusion References Chapter 5 Machine Learning Classifiers in Health Care 5.1 Introduction 5.1.1 Supervised learning 5.1.2 Unsupervised learning 5.1.3 Semi-supervised learning 5.1.4 Reinforcement learning 5.2 Decision Making in Health Care 5.2.1 Introduction 5.2.2 Clinical Decision Making 5.3 Machine Learning in Health Care 5.3.1 Introduction 5.3.2 Opportunities for ML in Health Care 5.4 Data Classification Techniques in Health Care 5.4.1 Support Vector Machine 5.4.2 Logistic Regression 5.4.3 Artificial Neural Network 5.4.4 Random Forest 5.4.5 Decision Tree 5.4.6 K-Nearest Neighbor 5.4.7 Naïve Bayes 5.5 Case Studies 5.5.1 Brain Tumor Classification 5.5.1.1 MRI Brain Image Acquisitions 5.5.1.2 Preprocessing 5.5.1.3 Convolutional Neural Network (CNN) Algorithm 5.5.1.4 Training of the Network 5.5.1.5 Validation of Data Set 5.5.1.6 Results 5.5.2 Breast Cancer Classification 5.5.3 Classification of Chronic Kidney Disease 5.5.4 Classification of COVID-19 5.6 Conclusion References Chapter 6 Machine Learning Approaches for Analysis in Healthcare Informatics 6.1 Introduction 6.1.1 Learning 6.2 Machine Learning 6.2.1 Types of Machine Learning 6.2.2 Different Algorithms 6.3 Supervised Learning 6.3.1 Regression 6.3.2 Classification 6.4 Unsupervised Learning 6.4.1 K-means Algorithm 6.4.2 Self-Organizing Feature Map (SOM) 6.5 Evolutionary Learning 6.5.1 Genetic Algorithm 6.5.1.1 Establishing the Genetic Algorithm 6.6 Reinforcement Learning 6.6.1 Markov Decision Process 6.7 Healthcare Informatics 6.7.1 Health Care 6.7.2 Applications 6.8 Analysis and Diagnosis 6.8.1 Analysis 6.8.2 Diagnosis 6.9 Machine Learning in Health Care 6.9.1 Overview 6.9.2 Types 6.9.3 Applications 6.9.4 Modules 6.10 Conclusion References Chapter 7 Prediction of Epidemic Disease Outbreaks, Using Machine Learning 7.1 Introduction 7.2 Predictive Analytics 7.2.1 Role of Predictive Analytics in Healthcare 7.3 Machine Learning 7.3.1 Machine Learning Process 7.3.1.1 Main Steps in Machine Learning Process 7.3.2 Types of Machine Learning Algorithms 7.3.2.1 Supervised Learning 7.3.2.2 Unsupervised Learning 7.3.2.3 Semi-Supervised Learning 7.3.2.4 Reinforcement Learning 7.4 Machine Learning Models for Predicting an Epidemic Disease Outbreak 7.4.1 Collection and Cleaning of Epidemic Disease Outbreak Data 7.4.1.1 Data Collection 7.4.1.2 Data Cleaning 7.4.2 Training the Model and Making Predictions, Using Machine Learning Predictive Analytics 7.4.2.1 Training the Model 7.4.2.2 Prediction 7.4.3 Results Visualization and Communication 7.5 Epidemic Disease Dissemination Factors 7.5.1 Physical Network 7.5.1.1 Population Density 7.5.1.2 Hotspots 7.5.2 Geographical Locations 7.5.2.1 Climatic Factors 7.5.2.2 Geodemographic Factors 7.5.3 Clinical Studies 7.5.3.1 Clinical Case Classification 7.5.3.2 Vaccination Tracking 7.5.4 Social Media 7.5.4.1 Geo-Mapping 7.6 Machine Learning Algorithms for Disease Epidemic Prediction 7.6.1 Support Vector Machine (SVM) 7.6.2 Decision Tree 7.6.3 Naïve Bayes 7.6.4 Artificial Neural Networks (ANNs) 7.6.5 K-Means Clustering 7.7 Existing Research on Machine Learning Application in Epidemic Prediction 7.8 Real-Time Epidemic Disease Prediction: Challenges and Opportunities 7.8.1 Challenges 7.8.2 Opportunities and Advances 7.9 Relevance of Machine Learning to the Novel Coronavirus (COVID-19) Outbreak 7.9.1 Design and Development of Vaccines and Drugs 7.9.2 Predicting the Spread of Virus, Using Social Media Platforms 7.9.3 Diagnosing Virus Infection via Medical Images 7.9.4 AI-Based Chatbots for Diagnosis 7.9.5 Smartphone Application Developments References Chapter 8 Machine Learning–Based Case Studies for Healthcare Analytics: Electronic Health Records, Smart Health Monitoring, Disease Prediction, Precision Medicine, and Clinical Support Systems 8.1 Introduction 8.2 Electronic Health Records 8.2.1 Supervised Machine Learning with EHR in Healthcare 8.2.2 Semi-Supervised Machine Learning with EHRs in Health Care 8.2.3 Unsupervised Machine Learning with EHR in Health Care 8.3 Smart Health Monitoring 8.4 Disease Prediction 8.4.1 Predicting the Presence of Heart Diseases 8.5 Precision Medicine 8.6 Clinical Decision Support System 8.6.1 Smart CDSS Architecture 8.7 Key Challenges 8.8 Conclusion and Future Directions References Chapter 9 Applications of Computational Methods and Modeling in Drug Delivery 9.1 Introduction 9.2 Computer-Aided Design for Formulation 9.2.1 Advantages of CADD 9.2.2 CADD Approaches 9.2.2.1 Structure-Based Drug Design (SBDD) 9.2.2.2 Ligand-Based Drug Design 9.3 Molecular Dynamics 9.4 Molecular Docking 9.4.1 Application of Docking 9.4.1.1 Hit Identification 9.4.1.2 Lead Optimization 9.4.1.3 Bioremediation Protein 9.5 Advances in Deep Learning Approaches 9.5.1 Artificial Neural Network 9.5.1.1 Preformulation 9.5.1.2 ANN for Structure Retention Relationship 9.5.1.3 Pharmaceutical Formulation Optimization 9.5.1.4 In-Vitro/In-Vivo Correlations 9.5.1.5 ANN in Quality Structure–Activity Relationships 9.5.1.6 ANN in Proteomics and Genomics 9.5.1.7 ANN in Pharmacokinetics 9.5.1.8 ANN in the Permeability of Skin and Blood Brain Barrier 9.5.1.9 Diagnosis of Disease 9.5.2 Convolutional Neural Networks (CNN) 9.6 Application of Computer-Aided Techniques to Pharmaceutical Emulsion Development 9.7 Application of Computer-Aided Techniques to the Microemulsion Drug Carrier Development 9.8 Applications of Multiscale Methods in Drug Discovery 9.8.1 Approaches of Multiscale Modeling 9.8.1.1 Cardiac Modeling Molecular Dynamics 9.8.1.2 Network Biology and Cancer Modeling 9.9 Accelerated Drug Development by Machine Learning Methods 9.10 Conclusion References Chapter 10 Healthcare Data Analytics Using Business Intelligence Tool 10.1 Introduction: Big Data 10.2 Data Collection 10.2.1 Electronic Health Records (EHR) 10.2.2 Laboratory and Diagnostic Reports 10.2.3 Prescriptions 10.2.4 Forms Filled By Patients 10.3 Data Pre-Processing 10.3.1 Data Selection 10.3.2 Data Cleansing 10.3.3 Data Conversion/Transformation 10.3.4 Data Integration 10.4 Data Analytics and BI 10.4.1 Data Source Identification 10.4.2 Data Staging 10.4.3 Data Warehouse/Mart 10.4.4 Data Analysis 10.4.5 Visualization and Reporting 10.4.6 Decision Making 10.5 Business Intelligence Tools 10.5.1 Introduction to Power-BI 10.5.2 Results and Discussion 10.5.2.1 Getting Started with Power-BI 10.5.2.2 Working with Multiple Data Sources 10.5.2.3 Creation and Sharing of Dashboard 10.5.3 Recommender System 10.6 Findings from EHR Records, Using Machine Learning Algorithms 10.6.1 Descriptive Analytics 10.6.2 Predictive Analytics and Insights 10.7 Conclusion References Chapter 11 Machine Learning-Based Data Classification Techniques in Healthcare Using Massive Online Analysis Framework 11.1 Introduction 11.1.1 Disease Identification and Diagnosis 11.1.2 Drug Discovery 11.1.3 Medical Imaging 11.1.4 Personalized Medicine 11.1.5 Smart Health Records 11.1.6 Disease Prediction 11.2 Types of Healthcare Data 11.2.1 Clinical Data 11.2.2 Sensor Data 11.2.3 Omics Data 11.3 Time-Series Data in Healthcare 11.3.1 Time-Series Analysis 11.4 Machine Learning Algorithms on Classification Tasks 11.4.1 Classification 11.4.2 Classification Model 11.4.3 Binary Classification 11.4.4 Multi-Class Classification 11.4.5 Multi-Label Classification 11.4.6 Imbalanced Classification 11.5 Massive Online Analysis (MOA) Framework for Time-Series Data 11.5.1 Setting the Environment 11.5.1.1 Upload Dataset or Generating Synthetic Dataset 11.5.1.2 Converting CSV File to .arff File Format 11.5.2 Data Generator 11.5.3 Learning Algorithms 11.5.4 Evaluation Methods 11.5.4.1 Holdout Estimation Method 11.5.4.2 Prequential or Interleaved Test-Then-Train Estimation Method 11.5.4.3 Evaluation Performance Metrics 11.5.5 Discussions on Results 11.6 Laboratory Exercise and Solutions 11.7 Conclusion References Chapter 12 Prediction of Coronavirus (COVID-19) Disease Health Monitoring with Clinical Support System and Its Objectives 12.1 Introduction 12.2 History of COVID-19 12.2.1 Coronavirus 12.2.2 Global Health Security 12.2.3 Types of Coronavirus in Human Beings 12.2.3.1 General Coronavirus in Human Beings 12.2.3.2 Other Human Coronaviruses 12.2.3.3 SARS-CoV (Severe Acute Respiratory Syndrome Coronavirus) 12.2.3.4 MERS-CoV (Middle East Respiratory Syndrome Coronavirus) 12.2.3.5 SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) 12.3 Inter-Relations between Artificial Intelligence, Machine Learning, and Deep Learning 12.3.1 Machine Learning 12.3.1.1 Problem Types Solved through Machine Learning 12.3.1.2 Types of Machine Learning Algorithms 12.3.2 Machine Learning Workflow 12.3.2.1 Smart Health Monitoring System 12.3.2.2 Electronic Health Records (Electronic Medical Records) 12.3.2.3 Manipulation of Supervised Concern and the Incorporated Delivery Scheme 12.3.2.4 Functional Operation of an Electronic Health Record System 12.3.2.5 Inquiry and Inspection Systems 12.3.2.6 Medical Care 12.3.2.7 Experimental Study 12.4 Conclusion References Index