ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Machine design: an integrated approach

دانلود کتاب طراحی ماشین: یک رویکرد یکپارچه

Machine design: an integrated approach

مشخصات کتاب

Machine design: an integrated approach

ویرایش: [Sixth edition] 
نویسندگان:   
سری:  
ISBN (شابک) : 9780135184233 
ناشر: Prentice Hall 
سال نشر: 2020 
تعداد صفحات: [1120] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 204 Mb 

قیمت کتاب (تومان) : 48,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Machine design: an integrated approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب طراحی ماشین: یک رویکرد یکپارچه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Frontmatter
	Preface
	Video Contents
Part I. Fundamentals
	Chapter 1. Introduction to Design
		1.1 Design
			Machine Design
		1.2 A Design Process
		1.3 Problem Formulation and Calculation
			Definition Stage
			Preliminary Design Stage
			Detailed Design Stage
			Documentation Stage
		1.4 The Engineering Model
			Estimation and First-Order Analysis
			The Engineering Sketch
		1.5 Computer-Aided Design and Engineering
			Computer-Aided Design (CAD)
			Computer-Aided Engineering (CAE)
			Computational Accuracy
		1.6 The Engineering Report
		1.7 Factors of Safety and Design Codes
			Factor of Safety
			Choosing a Safety Factor
			Design and Safety Codes
		1.8 Statistical Considerations
		1.9 Units
		1.10 Summary
		1.11 References
		1.12 Web References
		1.13 Bibliography
		1.14 Problems
	Chapter 2. Materials and Processes
		2.0 Introduction
		2.1 Material-Property Definitions
			The Tensile Test
			Ductility and Brittleness
			The Compression Test
			The Bending Test
			The Torsion Test
			Fatigue Strength and Endurance Limit
			Impact Resistance
			Fracture Toughness
			Creep and Temperature Effects
		2.2 The Statistical Nature of Material Properties
		2.3 Homogeneity and Isotropy
		2.4 Hardness
			Heat Treatment
			Surface (Case) Hardening
			Heat Treating Nonferrous Materials
			Mechanical Forming and Hardening
		2.5 Coatings and Surface Treatments
			Galvanic Action
			Electroplating
			Electroless Plating
			Anodizing
			Plasma-Sprayed Coatings
			Chemical Coatings
		2.6 General Properties of Metals
			Cast Iron
			Cast Steels
			Wrought Steels
			Steel Numbering Systems
			Aluminum
			Titanium
			Magnesium
			Copper Alloys
		2.7 General Properties of Nonmetals
			Polymers
			Ceramics
			Composites
		2.8 Selecting Materials
		2.9 Summary
		2.10 References
		2.11 Web References
		2.12 Bibliography
		2.13 Problems
	Chapter 3. Kinematics and Load Determination
		3.0 Introduction
		3.1 Degree of Freedom
		3.2 Mechanisms
		3.3 Calculating Degree of Freedom (Mobility)
		3.4 Common 1-DOF Mechanisms
			Fourbar Linkage and the Grashof Condition
			Sixbar Linkage
			Cam and Follower
		3.5 Analyzing Linkage Motion
			Types of Motion
			Complex Numbers as Vectors
			The Vector Loop Equation
		3.6 Analyzing the Fourbar Linkage
			Solving for Position in the Fourbar Linkage
			Solving for Velocity in the Fourbar Linkage
			Angular Velocity Ratio and Mechanical Advantage
			Solving for Acceleration in the Fourbar Linkage
		3.7 Analyzing the Fourbar Crank-Slider
			Solving for Position in the Fourbar Crank-Slider
			Solving for Velocity in the Fourbar Crank-Slider
			Solving for Acceleration in the Fourbar Crank-Slider
			Other Linkages
		3.8 Cam Design and Analysis
			The Timing Diagram
			The svaj Diagram
			Polynomials for the Double-Dwell Case
			Polynomials for the Single-Dwell Case
			Pressure Angle
			Radius of Curvature
		3.9 Loading Classes For Force Analysis
		3.10 Free-body Diagrams
		3.11 Load Analysis
			Three-Dimensional Analysis
			Two-Dimensional Analysis
			Static Load Analysis
		3.12 Two-Dimensional, Static Loading Case Studies
		3.13 Three-Dimensional, Static Loading Case Study
		3.14 Dynamic Loading Case Study
		3.15 Vibration Loading
			Natural Frequency
			Dynamic Forces
		3.16 Impact Loading
			Energy Method
		3.17 Beam Loading
			Shear and Moment
			Singularity Functions
			Superposition
		3.18 Summary
		3.19 References
		3.20 Web References
		3.21 Bibliography
		3.22 Problems
	Chapter 4. Stress, Strain, and Deflection
		4.0 Introduction
		4.1 Stress
		4.2 Strain
		4.3 Principal Stresses
		4.4 Plane Stress and Plane Strain
			Plane Stress
			Plane Strain
		4.5 Mohr’s Circles
		4.6 Applied Versus Principal Stresses
		4.7 Axial Tension
		4.8 Direct Shear Stress, Bearing Stress, and Tearout
			Direct Shear
			Direct Bearing
			Tearout Failure
		4.9 Beams and Bending Stresses
			Beams in Pure Bending
			Shear Due to Transverse Loading
		4.10 Deflection in Beams
			Deflection by Singularity Functions
			Statically Indeterminate Beams
		4.11 Castigliano’s Method
			Deflection by Castigliano’s Method
			Finding Redundant Reactions with Castigliano’s Method
		4.12 Torsion
		4.13 Combined Stresses
		4.14 Spring Rates
		4.15 Stress Concentration
			Stress Concentration Under Static Loading
			Stress Concentration Under Dynamic Loading
			Determining Geometric Stress-Concentration Factors
			Designing to Avoid Stress Concentrations
		4.16 Axial Compression - Columns
			Slenderness Ratio
			Short Columns
			Long Columns
			End Conditions
			Intermediate Columns
		4.17 Stresses in Cylinders
			Thick-Walled Cylinders
			Thin-Walled Cylinders
		4.18 Case Studies in Static Stress and Deflection Analysis
		4.19 Summary
		4.20 References
		4.21 Bibliography
		4.22 Problems
	Chapter 5. Static Failure Theories
		5.0 Introduction
		5.1 Failure of Ductile Materials Under Static Loading
			The von Mises-Hencky or Distortion-Energy Theory
			The Maximum Shear-Stress Theory
			The Maximum Normal-Stress Theory
			Comparison of Experimental Data with Failure Theories
		5.2 Failure of Brittle Materials Under Static Loading
			Even and Uneven Materials
			The Coulomb-Mohr Theory
			The Modified-Mohr Theory
		5.3 Fracture Mechanics
			Fracture-Mechanics Theory
			Fracture Toughness Kc
		5.4 Using The Static Loading Failure Theories
		5.5 Case Studies in Static Failure Analysis
		5.6 Summary
		5.7 References
		5.8 Bibliography
		5.9 Problems
	Chapter 6. Fatigue Failure Theories
		6.0 Introduction
			History of Fatigue Failure
		6.1 Mechanism of Fatigue Failure
			Crack Initiation Stage
			Crack Propagation Stage
			Fracture
		6.2 Fatigue-Failure Models
			Fatigue Regimes
			The Stress-Life Approach
			The Strain-Life Approach
			The LEFM Approach
		6.3 Machine-Design Considerations
		6.4 Fatigue Loads
			Rotating Machinery Loading
			Service Equipment Loading
		6.5 Measuring Fatigue Failure Criteria
			Fully Reversed Stresses
			Combined Mean and Alternating Stress
			Fracture-Mechanics Criteria
			Testing Actual Assemblies
		6.6 Estimating Fatigue Failure Criteria
			Estimating the Theoretical Fatigue Strength S or Endurance Limit S
			Correction Factors—Theoretical Fatigue Strength or Endurance Limit
			Corrected Fatigue Strength S or Corrected Endurance Limit S
			Creating Estimated S-N Diagrams
		6.7 Notches and Stress Concentrations
			Notch Sensitivity
		6.8 Residual Stresses
		6.9 Designing for High-Cycle Fatigue
		6.10 Designing for Fully Reversed Uniaxial Stresses
			Design Steps for Fully Reversed Stresses with Uniaxial Loading
		6.11 Designing for Fluctuating Uniaxial Stresses
			Creating the Modified-Goodman Diagram
			Applying Stress-Concentration Effects with Fluctuating Stresses
			Determining the Safety Factor with Fluctuating Stresses
			Design Steps for Fluctuating Stresses
		6.12 Designing for Multiaxial Stresses in Fatigue
			Frequency and Phase Relationships
			Fully Reversed Simple Multiaxial Stresses
			Fluctuating Simple Multiaxial Stresses
			Complex Multiaxial Stresses
		6.13 A General Approach to High-Cycle Fatigue Design
		6.14 A Case Study in Fatigue Design
		6.15 Summary
		6.16 References
		6.17 Bibliography
		6.18 Problems
		7.0 Introduction
	Chapter 7. Surface Failure
		7.1 Surface Geometry
		7.2 Mating Surfaces
		7.3 Friction
			Effect of Roughness on Friction
			Effect of Velocity on Friction
			Rolling Friction
			Effect of Lubricant on Friction
		7.4 Adhesive Wear
			The Adhesive-Wear Coefficient
		7.5 Abrasive Wear
			Abrasive Materials
			Abrasion-Resistant Materials
		7.6 Corrosion Wear
			Corrosion Fatigue
			Fretting Corrosion
		7.7 Surface Fatigue
		7.8 Spherical Contact
			Contact Pressure and Contact Patch in Spherical Contact
			Static Stress Distributions in Spherical Contact
		7.9 Cylindrical Contact
			Contact Pressure and Contact Patch in Parallel Cylindrical Contact
			Static Stress Distributions in Parallel Cylindrical Contact
		7.10 General Contact
			Contact Pressure and Contact Patch in General Contact
			Stress Distributions in General Contact
		7.11 Dynamic Contact Stresses
			Effect of a Sliding Component on Contact Stresses
		7.12 Surface Fatigue Failure Models—Dynamic Contact
		7.13 Surface Fatigue Strength
		7.14 Summary
		7.15 References
		7.16 Problems
	Chapter 8. Finite element Analysis
		8.0 Introduction
			Stress and Strain Computation
		8.1 Finite Element Method
		8.2 Element Types
			Element Dimension and Degree of Freedom (DOF)
			Element Order
			H-Elements Versus P-Elements
			Element Aspect Ratio
		8.3 Meshing
			Mesh Density
			Mesh Refinement
			Convergence
		8.4 Boundary Conditions
		8.5 Applying Loads
		8.6 Testing the Model (Verification)
		8.7 Modal Analysis
		8.8 Case Studies
		8.9 Summary
		8.10 References
		8.11 Bibliography
		8.12 Web Resources
		8.13 Problems
Part II. Machine Design
	Chapter 9. Design Case Studies
		9.0 Introduction
		9.1 Case Study 8—A Portable Air Compressor
		9.2 Case Study 9—A Hay-Bale Lifter
		9.3 Case Study 10—A Cam-Testing Machine
		9.4 Summary
		9.5 References
		9.6 Design Projects
	Chapter 10. Shafts, Keys, and Couplings
		10.0 Introduction
		10.1 Shaft Loads
		10.2 Attachments and Stress Concentrations
		10.3 Shaft Materials
		10.4 Shaft Power
		10.5 Shaft Loads
		10.6 Shaft Stresses
		10.7 Shaft Failure in Combined Loading
		10.8 Shaft Design
			General Considerations
			Design for Fully Reversed Bending and Steady Torsion
			Design for Fluctuating Bending and Fluctuating Torsion
		10.9 Shaft Deflection
			Shafts as Beams
			Shafts as Torsion Bars
		10.10 Keys and Keyways
			Parallel Keys
			Tapered Keys
			Woodruff Keys
			Stresses in Keys
			Key Materials
			Key Design
			Stress Concentrations in Keyways
		10.11 Splines
		10.12 Interference Fits
			Stresses in Interference Fits
			Stress Concentration in Interference Fits
			Fretting Corrosion
		10.13 Flywheel Design
			Energy Variation in a Rotating System
			Determining the Flywheel Inertia
			Stresses in Flywheels
			Failure Criteria
		10.14 Critical Speeds of Shafts
			Lateral Vibration of Shafts and Beams—Rayleigh’s Method
			Shaft Whirl
			Torsional Vibration
			Two Disks on a Common Shaft
			Multiple Disks on a Common Shaft
			Controlling Torsional Vibrations
		10.15 Couplings
			Rigid Couplings
			Compliant Couplings
		10.16 Case Study 8B
			Designing Driveshafts for a Portable Air Compressor
		10.17 Summary
		10.18 References
		10.19 Problems
	Chapter 11. Bearings and Lubrication
		11.0 Introduction
			A Caveat
		11.1 Lubricants
		11.2 Viscosity
		11.3 Types of Lubrication
			Full-Film Lubrication
			Boundary Lubrication
		11.4 Material Combinations in Sliding Bearings
		11.5 Hydrodynamic Lubrication Theory
			Petroff’s Equation for No-Load Torque
			Reynolds’ Equation for Eccentric Journal Bearings
			Torque and Power Losses in Journal Bearings
		11.6 Design of Hydrodynamic Bearings
			Design Load Factor—The Ocvirk Number
			Design Procedures
		11.7 Nonconforming Contacts
		11.8 Rolling-element bearings
			Comparison of Rolling and Sliding Bearings
			Types of Rolling-Element Bearings
		11.9 Failure of Rolling-element bearings
		11.10 Selection of Rolling-element bearings
			Basic Dynamic Load Rating C
			Modified Bearing Life Rating
			Basic Static Load Rating C0
			Combined Radial and Thrust Loads
			Calculation Procedures
		11.11 Bearing Mounting Details
		11.12 Special Bearings
		11.13 Case Study 10B
		11.14 Summary
			Important Equations Used in This Chapter
		11.15 References
		11.16 Problems
	Chapter 12. Spur Gears
		12.0 Introduction
		12.1 Gear Tooth Theory
			The Fundamental Law of Gearing
			The Involute Tooth Form
			Pressure Angle
			Gear Mesh Geometry
			Rack and Pinion
			Changing Center Distance
			Backlash
			Relative Tooth Motion
		12.2 Gear Tooth Nomenclature
		12.3 Interference and Undercutting
			Unequal-Addendum Tooth Forms
		12.4 Contact Ratio
		12.5 Gear Trains
			Simple Gear Trains
			Compound Gear Trains
			Reverted Compound Trains
			Epicyclic or Planetary Gear Trains
		12.6 Gear Manufacturing
			Forming Gear Teeth
			Machining
			Roughing Processes
			Finishing Processes
			Gear Quality
		12.7 Loading on Spur Gears
		12.8 Stresses in Spur Gears
			Bending Stresses
			Surface Stresses
		12.9 Gear Materials
			Material Strengths
			Bending-Fatigue Strengths for Gear Materials
			Surface-Fatigue Strengths for Gear Materials
		12.10 Lubrication of Gearing
		12.11 Design of Spur Gears
		12.12 Case Study 8C
		12.13 Summary
		12.14 References
		12.15 Problems
	Chapter 13. Helical, Bevel, and Worm Gears
		13.0 Introduction
		13.1 Helical Gears
			Helical Gear Geometry
			Helical-Gear Forces
			Virtual Number of Teeth
			Contact Ratios
			Stresses in Helical Gears
		13.2 Bevel Gears
			Bevel-Gear Geometry and Nomenclature
			Bevel-Gear Mounting
			Forces on Bevel Gears
			Stresses in Bevel Gears
		13.3 Wormsets
			Materials for Wormsets
			Lubrication in Wormsets
			Forces in Wormsets
			Wormset Geometry
			Rating Methods
			A Design Procedure for Wormsets
		13.4 Case Study 9B
		13.5 Summary
		13.6 References
		13.7 Problems
	Chapter 14. Spring Design
		14.0 Introduction
		14.1 Spring Rate
		14.2 Spring Configurations
		14.3 Spring Materials
			Spring Wire
			Flat Spring Stock
		14.4 Helical Compression Springs
			Spring Lengths
			End Details
			Active Coils
			Spring Index
			Spring Deflection
			Spring Rate
			Stresses in Helical Compression Spring Coils
			Helical Coil Springs of Nonround Wire
			Residual Stresses
			Buckling of Compression Springs
			Compression-Spring Surge
			Allowable Strengths for Compression Springs
			The Torsional-Shear S-N Diagram for Spring Wire
			The Modified-Goodman Diagram for Spring Wire
		14.5 Designing Helical Compression Springs for Static Loading
		14.6 Designing Helical Compression Springs for Fatigue Loading
		14.7 Helical Extension Springs
			Active Coils in Extension Springs
			Spring Rate of Extension Springs
			Spring Index of Extension Springs
			Coil Preload in Extension Springs
			Deflection of Extension Springs
			Coil Stresses in Extension Springs
			End Stresses in Extension Springs
			Surging in Extension Springs
			Material Strengths for Extension Springs
			Design of Helical Extension Springs
		14.8 Helical Torsion Springs
			Terminology for Torsion Springs
			Number of Coils in Torsion Springs
			Deflection of Torsion Springs
			Spring Rate of Torsion Springs
			Coil Closure
			Coil Stresses in Torsion Springs
			Material Parameters for Torsion Springs
			Safety Factors for Torsion Springs
			Designing Helical Torsion Springs
		14.9 Belleville Spring Washers
			Load-Deflection Function for Belleville Washers
			Stresses in Belleville Washers
			Static Loading of Belleville Washers
			Dynamic Loading
			Stacking Springs
			Designing Belleville Springs
		14.10 Case Study 10C
		14.11 Summary
		14.12 References
		14.13 Problems
	Chapter 15. Screws and Fasteners
		15.0 Introduction
		15.1 Standard Thread Forms
			Tensile Stress Area
			Standard Thread Dimensions
		15.2 Power Screws
			Square, Acme, and Buttress Threads
			Power Screw Application
			Power Screw Force and Torque Analysis
			Friction Coefficients
			Self-Locking and Back-Driving of Power Screws
			Screw Efficiency
			Ball Screws
		15.3 Stresses in Threads
			Axial Stress
			Shear Stress
			Torsional Stress
		15.4 Types of Screw Fasteners
			Classification by Intended Use
			Classification by Thread Type
			Classification by Head Style
			Nuts and Washers
		15.5 Manufacturing Fasteners
		15.6 Strengths of Standard Bolts and Machine Screws
		15.7 Preloaded Fasteners in Tension
			Preloaded Bolts Under Static Loading
			Preloaded Bolts Under Dynamic Loading
		15.8 Determining the Joint Stiffness Factor
			Joints With Two Plates of the Same Material
			Joints With Two Plates of Different Materials
			Gasketed Joints
		15.9 Controlling Preload
			The Turn-of-the-Nut Method
			Torque-Limited Fasteners
			Load-Indicating Washers
			Torsional Stress Due to Torquing of Bolts
		15.10 Fasteners in Shear
			Dowel Pins
			Centroids of Fastener Groups
			Determining Shear Loads on Fasteners
		15.11 Case Study 8D
		15.12 Summary
		15.13 References
		15.14 Bibliography
		15.15 Problems
	Chapter 16. Weldments
		16.0 Introduction
		16.1 Welding Processes
			Types of Welding in Common Use
			Why Should a Designer Be Concerned with the Welding Process?
		16.2 Weld Joints and Weld Types
			Joint Preparation
			Weld Specification
		16.3 Principles of Weldment Design
		16.4 Static Loading of Welds
		16.5 Static Strength of Welds
			Residual Stresses in Welds
			Direction of Loading
			Allowable Shear Stress for Statically Loaded Fillet and PJP Welds
		16.6 Dynamic Loading of Welds
			Effect of Mean Stress on Weldment Fatigue Strength
			Are Correction Factors Needed For Weldment Fatigue Strength?
			Effect of Weldment Configuration on Fatigue Strength
			Is There an Endurance Limit for Weldments?
			Fatigue Failure in Compression Loading?
		16.7 Treating a Weld as a Line
		16.8 Eccentrically Loaded Weld Patterns
		16.9 Design Considerations for Weldments in Machines
		16.10 Summary
		16.11 References
		16.12 Problems
	Chapter 17. Clutches and Brakes
		17.0 Introduction
		17.1 Types of Brakes and Clutches
		17.2 Clutch/Brake Selection and Specification
		17.3 Clutch and Brake Materials
		17.4 Disk Clutches
			Uniform Pressure
			Uniform Wear
		17.5 Disk Brakes
		17.6 Drum Brakes
			Short-Shoe External Drum Brakes
			Long-Shoe External Drum Brakes
			Long-Shoe Internal Drum Brakes
		17.7 Summary
		17.8 References
		17.9 Bibliography
		17.10 Problems
Appendices
	A. Material Properties
	B. Beam Tables
	C. Stress-Concentration Factors
	D. Answers to Selected Problems
Index
Downloads Index




نظرات کاربران