دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Sayed M. Metwalli
سری:
ISBN (شابک) : 1119156645, 9781119156642
ناشر: Wiley
سال نشر: 2021
تعداد صفحات: 1008
[1011]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 23 Mb
در صورت تبدیل فایل کتاب Machine Design with CAD and Optimization به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی ماشین با CAD و بهینه سازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
طراحی ماشین با CAD و بهینه سازی راهنمای ابزارها و مهارت های جدید CAD و بهینه سازی برای تولید ترکیب طراحی واقعی عناصر و سیستم های ماشین طراحی ماشین با CAD و بهینه سازی ابزارهای اساسی برای طراحی یا سنتز عناصر ماشین و مونتاژ عناصر آینده نگر در سیستم ها را ارائه می دهد. یا محصولات این شامل پایگاه دانش لازم، طراحی به کمک کامپیوتر و ابزارهای بهینه سازی برای تعریف هندسه و انتخاب مواد مناسب عناصر ماشین است. یک متن جامع برای هر عنصر شامل: نمودار، برگه اکسل، برنامه MATLAB®، یا یک برنامه تعاملی برای محاسبه هندسه عنصر برای راهنمایی در انتخاب ماده مناسب است. این کتاب شامل مقدمه ای بر طراحی ماشین است و شامل چندین فاکتور طراحی برای بررسی است. همچنین اطلاعاتی در مورد طراحی سنتی دقیق عناصر ماشین ارائه می دهد. علاوه بر این، نویسنده رویکرد سنتز طراحی واقعی را بررسی میکند و مطالبی را در مورد تنشها و شکست مواد به دلیل بارگذاری اعمال شده در طول عملکرد مورد نظر ارائه میدهد. این منبع جامع همچنین شامل مقدمه ای بر طراحی و بهینه سازی به کمک کامپیوتر است. این کتاب مهم: ابزارهایی را برای انجام یک سنتز طراحی مستقیم جدید به جای طراحی با فرآیند تجزیه و تحلیل مکرر فراهم میکند. امکان ترکیب اولیه طراحی مناسب را در زمان بسیار کوتاه فراهم می کند. اطلاعاتی در مورد کاربرد CAD و بهینه سازی همراه با یک سایت همراه آنلاین شامل فایل های ارائه نوشته شده برای دانشجویان طراحی مهندسی، مهندسی مکانیک و طراحی خودرو ارائه می دهد. طراحی ماشین با CAD و بهینهسازی شامل ابزارهای جدید CAD و بهینهسازی است و مهارتهای مورد نیاز برای تولید ترکیب طراحی واقعی عناصر و سیستمهای ماشین روی زمین محکم برای محصولات و سیستمهای بهتر را تعریف میکند.
MACHINE DESIGN WITH CAD AND OPTIMIZATION A guide to the new CAD and optimization tools and skills to generate real design synthesis of machine elements and systems Machine Design with CAD and Optimization offers the basic tools to design or synthesize machine elements and assembly of prospective elements in systems or products. It contains the necessary knowledge base, computer aided design, and optimization tools to define appropriate geometry and material selection of machine elements. A comprehensive text for each element includes: a chart, excel sheet, a MATLAB® program, or an interactive program to calculate the element geometry to guide in the selection of the appropriate material. The book contains an introduction to machine design and includes several design factors for consideration. It also offers information on the traditional rigorous design of machine elements. In addition, the author reviews the real design synthesis approach and offers material about stresses and material failure due to applied loading during intended performance. This comprehensive resource also contains an introduction to computer aided design and optimization. This important book: Provides the tools to perform a new direct design synthesis rather than design by a process of repeated analysis Contains a guide to knowledge-based design using CAD tools, software, and optimum component design for the new direct design synthesis of machine elements Allows for the initial suitable design synthesis in a very short time Delivers information on the utility of CAD and Optimization Accompanied by an online companion site including presentation files Written for students of engineering design, mechanical engineering, and automotive design. Machine Design with CAD and Optimization contains the new CAD and Optimization tools and defines the skills needed to generate real design synthesis of machine elements and systems on solid ground for better products and systems.
Cover Title Page Copyright Contents Preface Acknowledgments About the Companion Website Part I Introduction and Design Considerations Chapter 1 Introduction to Design 1.1 Introduction 1.2 Phases of Design 1.3 Basic Mechanical Functions 1.4 Design Factors 1.5 Synthesis Approach to Design 1.6 Product Life Cycle 1.7 Business Measures 1.8 Research and Development Process in Product Cycle 1.9 Teamwork for Product or System Design 1.10 Design and Development Case Study 1.11 Units and Fundamentals 1.11.1 Units 1.11.1.1 Force and Mass 1.11.1.2 Pressure 1.11.1.3 Velocity, Acceleration, and Rotational Speed 1.11.1.4 Moments, Work, and Power 1.11.1.5 Weight 1.11.1.6 Prefixes 1.11.2 Unit Conversion 1.11.3 Vectors and Matrices 1.12 Summary Problems References Internet Sites Chapter 2 Design Considerations 2.1 Mathematical Modeling 2.1.1 Mathematical Model Initiation and Adoption 2.1.2 Generalized System Modeling 2.1.3 Modeling of Loads and Material Variations 2.2 Calculation Tools 2.2.1 Excel© 2.2.2 MATLAB© 2.2.3 Computer‐Aided Design (CAD) 2.2.4 Finite Element (FE) 2.3 Design Procedure 2.4 Manufacturing Processes 2.4.1 Casting or Molding 2.4.2 Deformation 2.4.3 Machining 2.4.4 Joining 2.4.5 Surface and Heat Treatment 2.4.6 3D Printing or Additive Manufacturing 2.4.7 Tolerances, Surface Finish, and Fits 2.4.7.1 Tolerances 2.4.7.2 Surface Finish 2.4.7.3 Fits 2.4.7.4 Fundamental Deviations 2.5 Standard Sets and Components 2.6 Codes and Standards 2.7 Summary Problems References Internet Links (Selected) Part II Knowledge‐Based Design Chapter 3 Introduction to Computer‐Aided Techniques 3.1 CAD and Geometric Modeling 3.1.1 Classical Design Process 3.1.2 Synthesis Design Process 3.1.3 Human–Machine Characteristics 3.2 Geometric Construction and FE Analysis 3.3 CAD/CAM/CAE and Advanced Systems 3.4 Virtual Reality 3.4.1 Virtual Reality Process 3.4.2 Virtual Reality Hardware Requirements 3.4.3 Virtual Reality Interactive‐Process Tools 3.4.4 Virtual Reality Applications 3.5 Summary Problems References Internet Links Chapter 4 Computer‐Aided Design 4.1 3D Geometric Modeling and Viewing Transformation 4.1.1 3D Geometric Modeling 4.1.1.1 Geometric Computations 4.1.1.2 Topological Operations and the Euler Formula 4.1.1.3 Geometric and Global Operations 4.1.1.4 Procedures for Constructing a Single or a Compound Solid 4.1.2 Homogeneous Coordinates Versus Cartesian Coordinates 4.1.2.1 Point in Space 4.1.2.2 Vectors 4.1.2.3 Lines 4.1.2.4 Body Geometry and Vertices 4.1.3 Body Transformation 4.1.3.1 Translation 4.1.3.2 Rotation 4.1.3.3 Scaling 4.1.3.4 Zooming 4.1.3.5 Skewing 4.1.3.6 Perspective 4.1.3.7 Orthographic Projection 4.1.3.8 Body Transformation Systems 4.1.4 Stereo Viewing 4.1.5 3D Graphics 4.2 Parametric Modeling 4.2.1 Parametric Lines 4.2.1.1 Alternative Parametric Form 4.2.2 Parametric Planes 4.2.3 Parametric Bilinear Surfaces 4.2.4 Parametric Curves and Surfaces 4.2.5 Free‐Form Parametric Curves and Surfaces 4.2.5.1 Surface Patches and Curves 4.2.5.2 Bezier Curves 4.2.5.3 Bezier Surfaces or Patches 4.2.5.4 B‐Spline Curves 4.2.5.5 B‐Spline Surfaces 4.2.5.6 NURBS 4.2.6 Intersections 4.2.6.1 Intersection of Two Lines 4.2.6.2 Intersection of a Line with a Plane 4.2.6.3 Intersection of Two Planes 4.2.6.4 Intersection of Three Planes 4.3 CAD Hardware and Software 4.4 Rendering and Animation 4.4.1 Realistic Presentations 4.4.2 Color Use 4.4.2.1 Visual Color Description 4.4.2.2 Color Specification System 4.4.3 Shading and Rendering Technique 4.4.3.1 Methods of Shading a Polygon or a Triangle 4.4.4 Computing Vertex and Surface Normals 4.4.5 Rendering Process 4.4.5.1 Diffuse Illumination 4.4.5.2 Specular Reflection 4.4.5.3 Transparency 4.4.5.4 Total Rendering Effect 4.4.6 3D Cursor and Picking 4.5 Data Structure 4.5.1 Drawing Exchange Format (DXF) 4.5.2 STL File Format 4.5.3 IGES File Format 4.5.4 STEP File Format 4.6 Using CAD in 3D Modeling and CAM 4.7 Summary Problems References Internet Links Chapter 5 Optimization 5.1 Introduction 5.1.1 Formulation of Optimization Problem 5.1.1.1 Design Vector D 5.1.1.2 Objective Function f 5.1.1.3 Constraints 5.1.1.4 Problem Statement 5.1.1.5 Dimensional Considerations in Analytical Design “Nondimensionalization” 5.1.2 Classification of Optimization 5.1.2.1 Problem Classification 5.1.2.2 Methods of Optimization 5.1.2.3 Optimization Fields 5.2 Searches in One Direction 5.2.1 Quadratic Interpolation 5.2.2 Golden Section (Euclid) 5.2.3 Newton–Raphson 5.2.4 Other Methods 5.3 Multidimensional: Classical Indirect Approach 5.3.1 Unconstrained Problem 5.3.2 Equality Constrained Problem 5.3.2.1 Lagrange Multipliers 5.3.3 Inequality Constraints Problem 5.4 Multidimensional Unconstrained Problem 5.4.1 Univariate Method 5.4.2 Powell's Method of Conjugate Directions 5.4.3 Linearized Ridge Path Method 5.4.4 Random Search Methods 5.4.5 Steepest Descent Method 5.4.5.1 Implementation 5.4.6 Fletcher–Reeves Conjugate Gradient 5.4.7 Newton–Raphson Method 5.4.8 Quasi‐Newton Methods 5.4.8.1 A Quadratic Optimization Technique 5.4.8.2 Identified Quadratic Optimization Technique 5.4.9 Comparison of Unconstrained Optimization Methods 5.5 Multidimensional Constrained Problem 5.5.1 Eliminating Constraints by Transformation 5.5.2 Exterior Penalty Functions 5.5.3 Interior Penalty Functions 5.5.4 Direct Methods for Constrained Problems 5.5.4.1 Convex–Concave Property 5.5.4.2 Kuhn–Tucker Conditions 5.5.4.3 Gradient Projection Method 5.5.4.4 Heuristic Gradient Projection Method (HGP) 5.5.4.5 Constrained Optimization Sample 5.5.5 Comparison of Optimum Constrained Methods 5.6 Applications to Machine Elements and Systems 5.7 Summary Problems References Chapter 6 Stresses, Deformations, and Deflections 6.1 Loads, Shear, Moment, Slope, and Deflection 6.1.1 External and Internal Loads 6.1.2 Pure Bending 6.1.3 Beam Deflection 6.1.3.1 Deflection by Integration 6.1.3.2 Deflection by Superposition 6.1.3.3 Deflection by Singularity Function 6.1.3.4 Deflection by Other Methods 6.1.4 Simple Beam Synthesis 6.1.5 Comparing Stresses and Deflections in Beams 6.1.5.1 Beam Stresses 6.1.5.2 Beam Deflection 6.1.5.3 Equivalent Loads on Simple Beams 6.2 Mathematical Model 6.3 Simple Stresses, Strains, and Deformations 6.3.1 Uniform Tension and Compression 6.3.2 Direct Uniform Shear 6.3.3 Pure Bending 6.3.4 Shear Stress and Deformation Due to Torsion 6.3.5 Transverse Shear and Shear Flow 6.3.5.1 Shear Center 6.4 Combined Stresses 6.4.1 Plane Stress State 6.4.1.1 Mohr's Circle 6.4.1.2 Principal Stresses and Principal Directions 6.4.1.3 Vector Space and Eigenvalue Problem 6.4.1.4 Stress Invariants \normalfont \textit \bgroup I\normalfont \textit \bgroup i 6.4.1.5 A Common Stress State 6.4.2 Triaxial Stress State 6.4.2.1 Stress Invariants Ii 6.4.3 Applications in Plane Stress and Triaxial Stress States 6.4.3.1 Thin Pressure Cylinders 6.4.3.2 Thick Pressure Cylinders 6.4.3.3 Press and Shrink Fits 6.4.3.4 Contact Stresses 6.5 Curved Beams 6.6 Strain Energy and Deflection 6.6.1 Elastic Strain 6.6.2 Elastic Strain Energy 6.6.3 Castigliano's Theorem and Deflections 6.7 Columns 6.7.1 Concentric Loading 6.7.1.1 Johnson's Parabolic Equation 6.7.2 Eccentric Loading 6.8 Equivalent Element 6.9 Thermal Effects 6.10 Stress Concentration Factors 6.11 Finite Element Method 6.11.1 Axially Loaded Elements 6.11.2 Prismatic Beam Element 6.11.3 Constant Strain Triangle 6.11.4 General 3D State: Linear Elasticity Problem 6.11.5 General 3D FE Procedure 6.11.6 Errors in FE Modeling and Solution 6.11.7 Some Classical FE Packages 6.12 Computer‐Aided Design and Optimization 6.12.1 Beam Synthesis Tablet 6.12.2 Column Synthesis Tablet 6.12.3 Optimum Stress Concentration 6.12.4 Optimum FE Prismatic Beams 6.12.5 Optimum FE Cantilever Beams 6.13 Summary Problems References Internet Links Chapter 7 Materials Static and Dynamic Strength 7.1 Material Structure and Failure Modes 7.1.1 Basic Elements of Material 7.1.2 Material Failure Modes and Properties 7.1.3 Tensile Properties 7.1.4 Other Static Properties 7.1.5 Other Time‐Dependent Properties 7.2 Numbering Systems and Designations 7.2.1 Carbon and Alloy Steels 7.2.2 Aluminum and Aluminum Alloys 7.2.3 Other Alloys 7.2.3.1 Copper and Copper Alloys 7.2.3.2 Magnesium and Magnesium Alloys 7.3 Heat Treatment and Alloying Elements 7.3.1 Heat Treatment 7.3.2 Case Hardening 7.3.3 Effect of Alloying Elements 7.4 Material Propertied and General Applications 7.4.1 Cast Iron 7.4.2 Plain and Low‐Alloyed Carbon Steels 7.4.2.1 Hot Rolled and Cold Drawn Plain‐Carbon Steels 7.4.2.2 Strength and Hardness of Annealed and Normalized Plain Carbon Steels 7.4.2.3 Quenched and Tempered Plain Carbon Steels 7.4.2.4 Quenched and Tempered Low‐Alloy Steels 7.4.3 Structural Steel 7.4.4 Stainless Steel 7.4.5 Tool Steel 7.4.6 Other Nonferrous Metals 7.4.6.1 Aluminum and Aluminum Alloys 7.4.6.2 Copper and Magnesium Alloys 7.4.7 Other Materials 7.4.7.1 Plastics 7.4.7.2 Composites 7.5 Particular Materials for Machine Elements 7.5.1 Standard Machine Elements 7.5.2 Synthesized or Designed Machine Elements 7.6 Hardness and Strength 7.7 Failure and Static Failure Theories 7.7.1 Maximum Normal Stress Theory 7.7.2 Maximum Shear Stress Theory 7.7.3 Maximum Distortion Energy Theory (von Mises) 7.7.4 Other Failure Theories 7.7.5 Comparison and Applications of Failure Theories 7.8 Fatigue Strength and Factors Affecting Fatigue 7.8.1 Fatigue Strength 7.8.1.1 Estimation of Endurance Limit 7.8.1.2 Estimation of Fatigue Strength 7.8.2 Factors Affecting Fatigue Strength 7.8.2.1 Surface Factor, Ksurf 7.8.2.2 Size Factor, Ksize 7.8.2.3 Loading Factor, Kload 7.8.2.4 Reliability Factor, Kreliab 7.8.2.5 Temperature Factor, Ktemp 7.8.2.6 Fatigue Concentration Factor, Kconc 7.8.2.7 Miscellaneous Factor, Kmiscel 7.8.3 Cumulative Fatigue Strength 7.8.4 Fluctuating Stresses 7.8.5 Fatigue Failure Criteria 7.9 Fracture Mechanics and Fracture Toughness 7.9.1 Stress Intensity Factor KI 7.9.2 Fracture Toughness: Critical Stress Intensity Factor KIC 7.9.3 Crack Propagation and Life 7.9.4 Crack Propagation and Real Case Study 7.10 Computer‐Aided Selection and Optimization 7.10.1 Material Properties: Carbon Steel 7.10.2 Fatigue Strength and Factors Affecting Fatigue: Carbon Steel 7.10.3 Static Strength and Factors of Safety: Carbon Steel 7.10.4 Optimization for a Specific Factor of Safety: Carbon Steel 7.11 Summary Problems References Internet Links Material Selection Material Standards Chapter 8 Introduction to Elements and System Synthesis 8.1 Introduction 8.2 Basic and Common Machine Elements 8.2.1 Couplings 8.2.1.1 Rigid Couplings 8.2.1.2 Flexible Couplings 8.2.1.3 Universal Joints 8.2.2 Keys, Pins, Retaining Rings, and Splines 8.2.2.1 Keys 8.2.2.2 Pins and Cotter Pins 8.2.2.3 Retaining Rings 8.2.2.4 Splines 8.2.3 Seals 8.2.4 Housings, Enclosures, Frames, and Chassis 8.3 Reverse Engineering 8.4 Sample Applications 8.4.1 Initial Bolt Synthesis 8.4.2 Initial Shaft Synthesis 8.4.3 Initial Bearing Synthesis 8.5 Computer‐Aided Design 8.6 System Synthesis 8.7 Computer‐Aided Assembly 8.8 Summary Problems References Internet Links Producers and Providers Standards and Codes Part III Detailed Design of Machine Elements Part A Basic Joints and Machine Elements Chapter 9 Screws, Fasteners, and Permanent Joints 9.1 Standards and Types 9.1.1 Thread Terminology and Designation 9.1.2 Joining Alternative Details 9.2 Stresses in Threads 9.3 Bolted Connections 9.3.1 Threads Under Simple Tensile Load 9.3.2 Preloading Due to Tightening 9.3.3 Tightening Torque 9.4 Bolt Strength in Static and Fatigue 9.5 Power Screws 9.5.1 Torque Requirements 9.5.2 Power Screw Efficiency 9.5.3 Stresses in Power Screws 9.5.4 Ball Screws 9.6 Permanent Joints 9.6.1 Welding 9.6.1.1 Welding Types and Symbols 9.6.1.2 Stresses in Welded Joints 9.6.1.3 Welding Strength 9.6.1.4 Resistance Welding 9.6.2 Bonded Joints 9.7 Computer‐Aided Design and Optimization 9.7.1 Threads Under Simple Tensile Load 9.7.2 Preloading Due to Bolt Tightening 9.7.3 Preloading, Bolt Tightening, and Fatigue Strength 9.7.4 Power Screws 9.7.5 Permanent Weldment Joints 9.7.6 Optimization 9.8 Summary Problems References Internet Links Chapter 10 Springs 10.1 Types of Springs 10.2 Helical Springs 10.2.1 Geometry, Definitions, and Configurations 10.2.2 Stresses and Deflections 10.2.2.1 Static Loading 10.2.2.2 Dynamic Loading 10.2.3 Buckling 10.2.4 Resonance 10.2.5 Design Procedure 10.2.5.1 Initial Synthesis 10.2.5.2 Detailed Design 10.2.6 Extension Springs 10.2.7 Torsion Springs 10.3 Leaf Springs 10.3.1 Stresses and Deflections 10.3.2 Design Procedure 10.3.2.1 Initial Synthesis 10.3.2.2 Detailed Design 10.4 Belleville Springs 10.5 Elastomeric and Other Springs 10.6 Computer‐Aided Design and Optimization 10.7 Summary Problems References Internet: Information and Some Manufacturer Internet: Images Chapter 11 Rolling Bearings 11.1 Bearing Types and Selection 11.2 Standard Dimension Series 11.2.1 Boundary Dimensions 11.2.2 Bearing Designation Number 11.3 Initial Design and Selection 11.4 Bearing Load 11.4.1 Bearing Life and Reliability 11.4.2 Load Distribution 11.4.3 Bearing Load Rating 11.5 Detailed Design and Selection 11.5.1 Static Loading 11.5.2 Combined Loading 11.5.3 Tapered Roller Bearings 11.5.4 Unsteady Loading 11.5.5 Detailed Design Procedure 11.6 Speed Limits 11.7 Lubrication and Friction 11.8 Mounting and Constructional Details 11.9 Computer‐Aided Design and Optimization 11.9.1 Initial Ball Bearing Synthesis 11.9.2 Dynamic Load Rating Estimate 11.9.3 Ball Bearing Selection 11.9.4 Rolling Bearing Optimization 11.10 Summary Problems References Internet Chapter 12 Journal Bearings 12.1 Lubricants 12.1.1 Lubricant Viscosity 12.1.2 Lubricant Selection 12.1.2.1 Stable Lubrication 12.2 Hydrodynamic Lubrication 12.2.1 Petroff's Equation 12.2.2 Journal Bearings 12.2.2.1 Long Bearing 12.2.2.2 Short Bearing 12.2.2.3 Finite Length Bearing 12.3 Journal Bearing Design Procedure 12.4 Boundary and Mixed Lubrication 12.5 Plain Bearing Materials 12.6 CAD and Optimization 12.6.1 CAD of Bearing Synthesis Using Knowledge Base Practice 12.6.2 CAD of Bearing Synthesis Using an Optimization Approach 12.6.3 Journal Bearing Synthesis Tablet 12.7 Summary Problems References Internet Link Part B Power Transmitting and Controlling Elements Chapter 13 Introduction to Power Transmission and Control 13.1 Prime Movers and Machines 13.2 Collinear and Noncollinear Transmission Elements 13.3 Power Control Elements 13.4 Computer‐Aided Design of a Power Transmission System 13.5 Summary Problems References Chapter 14 Spur Gears 14.1 Types and Utility 14.2 Definitions, Kinematics, and Standards 14.3 Force Analysis and Power Transmission 14.4 Design Procedure 14.4.1 Classical Procedure 14.4.2 Initial Synthesis 14.4.3 Detailed Design 14.4.3.1 Material Set 14.4.3.2 Bending Fatigue 14.4.3.3 Surface Fatigue 14.5 Critical Speed 14.6 CAD and Optimization 14.7 Constructional Details 14.7.1 Gearboxes 14.7.2 Gear Trains 14.7.3 Planetary or Epicyclic Gear Trains 14.8 Summary Problems References Internet Links Chapter 15 Helical, Bevel, and Worm Gears 15.1 Helical Gears 15.1.1 Types and Utility 15.1.2 Definitions, Kinematics, and Standards 15.1.3 Force Analysis 15.1.4 Design Procedure 15.1.4.1 Initial Synthesis 15.1.4.2 Detailed Design 15.2 Bevel Gears 15.2.1 Definitions, Kinematics, and Standards 15.2.2 Force Analysis 15.2.3 Design Procedure 15.2.3.1 Initial Design 15.2.3.2 Detailed Design 15.2.3.3 Material Set and Safety Factor 15.3 Worm Gears 15.3.1 Definitions, Kinematics, and Standards 15.3.2 Force Analysis 15.3.3 Design Procedure 15.3.3.1 Initial Synthesis 15.3.3.2 Detailed Design 15.3.3.3 Material Set and Safety Factor 15.4 Gear Failure Regimes and Remedies 15.5 Computer‐Aided Design and Optimization 15.5.1 Helical Gears Synthesis 15.5.2 Bevel Gears Synthesis 15.5.3 Worm Gears Synthesis 15.6 Constructional Details 15.7 Summary Problems References Internet Links Chapter 16 Flexible Elements 16.1 V‐belts 16.1.1 V‐belt Drive Relations 16.1.2 Standards and Geometric Relations 16.1.3 Design Procedure 16.1.3.1 Initial Synthesis 16.1.3.2 Detailed Design Process 16.2 Flat Belts 16.2.1 Drive Relations 16.2.2 Standards and Geometry Relations 16.2.3 Design Procedure 16.2.3.1 Initial Synthesis 16.2.3.2 Detailed Design Process 16.3 Ropes 16.3.1 Sizes and Properties 16.3.1.1 Wire Rope Strength 16.3.1.2 Other Wire Rope Properties 16.3.2 Design Procedure 16.3.2.1 Initial Synthesis 16.3.2.2 Detailed Design Process 16.4 Chains 16.4.1 Standards 16.4.1.1 Chain Size or Number 16.4.1.2 Chain Sprockets 16.4.2 Drive Relations 16.4.3 Set Dimensions and Constraints 16.4.4 Design Procedure 16.4.4.1 Initial Synthesis 16.4.4.2 Detailed Design Process 16.5 Friction Drives 16.6 Flexible Shafts 16.7 Computer‐Aided Design and Optimization 16.7.1 V‐belts Synthesis 16.7.2 Wire Rope Synthesis 16.7.3 Roller Chains Synthesis 16.8 Summary Problems References Internet Links Chapter 17 Shafts 17.1 Types of Shafts and Axles 17.2 Mathematical Model 17.3 Initial Design Estimate 17.4 Detailed Design 17.5 Design for Rigidity 17.6 Critical Speed 17.7 Computer‐Aided Design and Optimization 17.7.1 Shaft Materials 17.7.2 Computer‐Aided Design of Shafts 17.7.3 Optimum Design of Shafts 17.8 Constructional Details 17.9 Summary Problems References Internet Links Chapter 18 Clutches, Brakes, and Flywheels 18.1 Classifications of Clutches and Brakes 18.2 Cone Clutches and Brakes 18.2.1 Uniform Pressure 18.2.2 Uniform Wear Rate 18.3 Disk Clutches and Brakes 18.3.1 Uniform Pressure 18.3.2 Uniform Wear Rate 18.3.3 Multi‐disk Clutch‐Brake 18.3.3.1 Uniform Pressure 18.3.3.2 Uniform Wear Rate 18.3.4 Initial Disk Clutch‐Brake Synthesis 18.4 Caliper Disk Brakes 18.5 Energy Dissipation and Temperature Rise 18.5.1 Energy Dissipation 18.5.2 Temperature Rise 18.6 Design Process 18.6.1 Initial Synthesis 18.6.2 Detailed Design Process 18.7 Computer‐Aided Design and Optimization 18.8 Flywheels 18.9 Constructional Details 18.10 Summary Problems References Internet Links Appendix A Figures and Tables A.1 Conversion Between US and SI Units A.2 Standard SI Prefixes A.3 Preferred Numbers and Sizes A.4 Standard Rods, or Bars A.5 Standard Joining and Retaining Elements A.6 Standard Sealing Elements A.7 Material Properties A.8 Standard Sections or Profiles and Section Properties Index EULA