ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Machine Design with CAD and Optimization

دانلود کتاب طراحی ماشین با CAD و بهینه سازی

Machine Design with CAD and Optimization

مشخصات کتاب

Machine Design with CAD and Optimization

ویرایش: [1 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 1119156645, 9781119156642 
ناشر: Wiley 
سال نشر: 2021 
تعداد صفحات: 1008
[1011] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 23 Mb 

قیمت کتاب (تومان) : 50,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Machine Design with CAD and Optimization به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب طراحی ماشین با CAD و بهینه سازی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب طراحی ماشین با CAD و بهینه سازی

طراحی ماشین با CAD و بهینه سازی راهنمای ابزارها و مهارت های جدید CAD و بهینه سازی برای تولید ترکیب طراحی واقعی عناصر و سیستم های ماشین طراحی ماشین با CAD و بهینه سازی ابزارهای اساسی برای طراحی یا سنتز عناصر ماشین و مونتاژ عناصر آینده نگر در سیستم ها را ارائه می دهد. یا محصولات این شامل پایگاه دانش لازم، طراحی به کمک کامپیوتر و ابزارهای بهینه سازی برای تعریف هندسه و انتخاب مواد مناسب عناصر ماشین است. یک متن جامع برای هر عنصر شامل: نمودار، برگه اکسل، برنامه MATLAB®، یا یک برنامه تعاملی برای محاسبه هندسه عنصر برای راهنمایی در انتخاب ماده مناسب است. این کتاب شامل مقدمه ای بر طراحی ماشین است و شامل چندین فاکتور طراحی برای بررسی است. همچنین اطلاعاتی در مورد طراحی سنتی دقیق عناصر ماشین ارائه می دهد. علاوه بر این، نویسنده رویکرد سنتز طراحی واقعی را بررسی می‌کند و مطالبی را در مورد تنش‌ها و شکست مواد به دلیل بارگذاری اعمال شده در طول عملکرد مورد نظر ارائه می‌دهد. این منبع جامع همچنین شامل مقدمه ای بر طراحی و بهینه سازی به کمک کامپیوتر است. این کتاب مهم: ابزارهایی را برای انجام یک سنتز طراحی مستقیم جدید به جای طراحی با فرآیند تجزیه و تحلیل مکرر فراهم می‌کند. امکان ترکیب اولیه طراحی مناسب را در زمان بسیار کوتاه فراهم می کند. اطلاعاتی در مورد کاربرد CAD و بهینه سازی همراه با یک سایت همراه آنلاین شامل فایل های ارائه نوشته شده برای دانشجویان طراحی مهندسی، مهندسی مکانیک و طراحی خودرو ارائه می دهد. طراحی ماشین با CAD و بهینه‌سازی شامل ابزارهای جدید CAD و بهینه‌سازی است و مهارت‌های مورد نیاز برای تولید ترکیب طراحی واقعی عناصر و سیستم‌های ماشین روی زمین محکم برای محصولات و سیستم‌های بهتر را تعریف می‌کند.


توضیحاتی درمورد کتاب به خارجی

MACHINE DESIGN WITH CAD AND OPTIMIZATION A guide to the new CAD and optimization tools and skills to generate real design synthesis of machine elements and systems Machine Design with CAD and Optimization offers the basic tools to design or synthesize machine elements and assembly of prospective elements in systems or products. It contains the necessary knowledge base, computer aided design, and optimization tools to define appropriate geometry and material selection of machine elements. A comprehensive text for each element includes: a chart, excel sheet, a MATLAB® program, or an interactive program to calculate the element geometry to guide in the selection of the appropriate material. The book contains an introduction to machine design and includes several design factors for consideration. It also offers information on the traditional rigorous design of machine elements. In addition, the author reviews the real design synthesis approach and offers material about stresses and material failure due to applied loading during intended performance. This comprehensive resource also contains an introduction to computer aided design and optimization. This important book: Provides the tools to perform a new direct design synthesis rather than design by a process of repeated analysis Contains a guide to knowledge-based design using CAD tools, software, and optimum component design for the new direct design synthesis of machine elements Allows for the initial suitable design synthesis in a very short time Delivers information on the utility of CAD and Optimization Accompanied by an online companion site including presentation files Written for students of engineering design, mechanical engineering, and automotive design. Machine Design with CAD and Optimization contains the new CAD and Optimization tools and defines the skills needed to generate real design synthesis of machine elements and systems on solid ground for better products and systems.



فهرست مطالب

Cover
Title Page
Copyright
Contents
Preface
Acknowledgments
About the Companion Website
Part I Introduction and Design Considerations
	Chapter 1 Introduction to Design
		1.1 Introduction
		1.2 Phases of Design
		1.3 Basic Mechanical Functions
		1.4 Design Factors
		1.5 Synthesis Approach to Design
		1.6 Product Life Cycle
		1.7 Business Measures
		1.8 Research and Development Process in Product Cycle
		1.9 Teamwork for Product or System Design
		1.10 Design and Development Case Study
		1.11 Units and Fundamentals
			1.11.1 Units
				1.11.1.1 Force and Mass
				1.11.1.2 Pressure
				1.11.1.3 Velocity, Acceleration, and Rotational Speed
				1.11.1.4 Moments, Work, and Power
				1.11.1.5 Weight
				1.11.1.6 Prefixes
			1.11.2 Unit Conversion
			1.11.3 Vectors and Matrices
		1.12 Summary
		Problems
		References
		Internet Sites
	Chapter 2 Design Considerations
		2.1 Mathematical Modeling
			2.1.1 Mathematical Model Initiation and Adoption
			2.1.2 Generalized System Modeling
			2.1.3 Modeling of Loads and Material Variations
		2.2 Calculation Tools
			2.2.1 Excel©
			2.2.2 MATLAB©
			2.2.3 Computer‐Aided Design (CAD)
			2.2.4 Finite Element (FE)
		2.3 Design Procedure
		2.4 Manufacturing Processes
			2.4.1 Casting or Molding
			2.4.2 Deformation
			2.4.3 Machining
			2.4.4 Joining
			2.4.5 Surface and Heat Treatment
			2.4.6 3D Printing or Additive Manufacturing
			2.4.7 Tolerances, Surface Finish, and Fits
				2.4.7.1 Tolerances
				2.4.7.2 Surface Finish
				2.4.7.3 Fits
				2.4.7.4 Fundamental Deviations
		2.5 Standard Sets and Components
		2.6 Codes and Standards
		2.7 Summary
		Problems
		References
		Internet Links (Selected)
Part II Knowledge‐Based Design
	Chapter 3 Introduction to Computer‐Aided Techniques
		3.1 CAD and Geometric Modeling
			3.1.1 Classical Design Process
			3.1.2 Synthesis Design Process
			3.1.3 Human–Machine Characteristics
		3.2 Geometric Construction and FE Analysis
		3.3 CAD/CAM/CAE and Advanced Systems
		3.4 Virtual Reality
			3.4.1 Virtual Reality Process
			3.4.2 Virtual Reality Hardware Requirements
			3.4.3 Virtual Reality Interactive‐Process Tools
			3.4.4 Virtual Reality Applications
		3.5 Summary
		Problems
		References
		Internet Links
	Chapter 4 Computer‐Aided Design
		4.1 3D Geometric Modeling and Viewing Transformation
			4.1.1 3D Geometric Modeling
				4.1.1.1 Geometric Computations
				4.1.1.2 Topological Operations and the Euler Formula
				4.1.1.3 Geometric and Global Operations
				4.1.1.4 Procedures for Constructing a Single or a Compound Solid
			4.1.2 Homogeneous Coordinates Versus Cartesian Coordinates
				4.1.2.1 Point in Space
				4.1.2.2 Vectors
				4.1.2.3 Lines
				4.1.2.4 Body Geometry and Vertices
			4.1.3 Body Transformation
				4.1.3.1 Translation
				4.1.3.2 Rotation
				4.1.3.3 Scaling
				4.1.3.4 Zooming
				4.1.3.5 Skewing
				4.1.3.6 Perspective
				4.1.3.7 Orthographic Projection
				4.1.3.8 Body Transformation Systems
			4.1.4 Stereo Viewing
			4.1.5 3D Graphics
		4.2 Parametric Modeling
			4.2.1 Parametric Lines
				4.2.1.1 Alternative Parametric Form
			4.2.2 Parametric Planes
			4.2.3 Parametric Bilinear Surfaces
			4.2.4 Parametric Curves and Surfaces
			4.2.5 Free‐Form Parametric Curves and Surfaces
				4.2.5.1 Surface Patches and Curves
				4.2.5.2 Bezier Curves
				4.2.5.3 Bezier Surfaces or Patches
				4.2.5.4 B‐Spline Curves
				4.2.5.5 B‐Spline Surfaces
				4.2.5.6 NURBS
			4.2.6 Intersections
				4.2.6.1 Intersection of Two Lines
				4.2.6.2 Intersection of a Line with a Plane
				4.2.6.3 Intersection of Two Planes
				4.2.6.4 Intersection of Three Planes
		4.3 CAD Hardware and Software
		4.4 Rendering and Animation
			4.4.1 Realistic Presentations
			4.4.2 Color Use
				4.4.2.1 Visual Color Description
				4.4.2.2 Color Specification System
			4.4.3 Shading and Rendering Technique
				4.4.3.1 Methods of Shading a Polygon or a Triangle
			4.4.4 Computing Vertex and Surface Normals
			4.4.5 Rendering Process
				4.4.5.1 Diffuse Illumination
				4.4.5.2 Specular Reflection
				4.4.5.3 Transparency
				4.4.5.4 Total Rendering Effect
			4.4.6 3D Cursor and Picking
		4.5 Data Structure
			4.5.1 Drawing Exchange Format (DXF)
			4.5.2 STL File Format
			4.5.3 IGES File Format
			4.5.4 STEP File Format
		4.6 Using CAD in 3D Modeling and CAM
		4.7 Summary
		Problems
		References
		Internet Links
	Chapter 5 Optimization
		5.1 Introduction
			5.1.1 Formulation of Optimization Problem
				5.1.1.1 Design Vector D
				5.1.1.2 Objective Function f
				5.1.1.3 Constraints
				5.1.1.4 Problem Statement
				5.1.1.5 Dimensional Considerations in Analytical Design “Nondimensionalization”
			5.1.2 Classification of Optimization
				5.1.2.1 Problem Classification
				5.1.2.2 Methods of Optimization
				5.1.2.3 Optimization Fields
		5.2 Searches in One Direction
			5.2.1 Quadratic Interpolation
			5.2.2 Golden Section (Euclid)
			5.2.3 Newton–Raphson
			5.2.4 Other Methods
		5.3 Multidimensional: Classical Indirect Approach
			5.3.1 Unconstrained Problem
			5.3.2 Equality Constrained Problem
				5.3.2.1 Lagrange Multipliers
			5.3.3 Inequality Constraints Problem
		5.4 Multidimensional Unconstrained Problem
			5.4.1 Univariate Method
			5.4.2 Powell's Method of Conjugate Directions
			5.4.3 Linearized Ridge Path Method
			5.4.4 Random Search Methods
			5.4.5 Steepest Descent Method
				5.4.5.1 Implementation
			5.4.6 Fletcher–Reeves Conjugate Gradient
			5.4.7 Newton–Raphson Method
			5.4.8 Quasi‐Newton Methods
				5.4.8.1 A Quadratic Optimization Technique
				5.4.8.2 Identified Quadratic Optimization Technique
			5.4.9 Comparison of Unconstrained Optimization Methods
		5.5 Multidimensional Constrained Problem
			5.5.1 Eliminating Constraints by Transformation
			5.5.2 Exterior Penalty Functions
			5.5.3 Interior Penalty Functions
			5.5.4 Direct Methods for Constrained Problems
				5.5.4.1 Convex–Concave Property
				5.5.4.2 Kuhn–Tucker Conditions
				5.5.4.3 Gradient Projection Method
				5.5.4.4 Heuristic Gradient Projection Method (HGP)
				5.5.4.5 Constrained Optimization Sample
			5.5.5 Comparison of Optimum Constrained Methods
		5.6 Applications to Machine Elements and Systems
		5.7 Summary
		Problems
		References
	Chapter 6 Stresses, Deformations, and Deflections
		6.1 Loads, Shear, Moment, Slope, and Deflection
			6.1.1 External and Internal Loads
			6.1.2 Pure Bending
			6.1.3 Beam Deflection
				6.1.3.1 Deflection by Integration
				6.1.3.2 Deflection by Superposition
				6.1.3.3 Deflection by Singularity Function
				6.1.3.4 Deflection by Other Methods
			6.1.4 Simple Beam Synthesis
			6.1.5 Comparing Stresses and Deflections in Beams
				6.1.5.1 Beam Stresses
				6.1.5.2 Beam Deflection
				6.1.5.3 Equivalent Loads on Simple Beams
		6.2 Mathematical Model
		6.3 Simple Stresses, Strains, and Deformations
			6.3.1 Uniform Tension and Compression
			6.3.2 Direct Uniform Shear
			6.3.3 Pure Bending
			6.3.4 Shear Stress and Deformation Due to Torsion
			6.3.5 Transverse Shear and Shear Flow
				6.3.5.1 Shear Center
		6.4 Combined Stresses
			6.4.1 Plane Stress State
				6.4.1.1 Mohr's Circle
				6.4.1.2 Principal Stresses and Principal Directions
				6.4.1.3 Vector Space and Eigenvalue Problem
				6.4.1.4 Stress Invariants \normalfont \textit \bgroup I\normalfont \textit \bgroup i
				6.4.1.5 A Common Stress State
			6.4.2 Triaxial Stress State
				6.4.2.1 Stress Invariants Ii
			6.4.3 Applications in Plane Stress and Triaxial Stress States
				6.4.3.1 Thin Pressure Cylinders
				6.4.3.2 Thick Pressure Cylinders
				6.4.3.3 Press and Shrink Fits
				6.4.3.4 Contact Stresses
		6.5 Curved Beams
		6.6 Strain Energy and Deflection
			6.6.1 Elastic Strain
			6.6.2 Elastic Strain Energy
			6.6.3 Castigliano's Theorem and Deflections
		6.7 Columns
			6.7.1 Concentric Loading
				6.7.1.1 Johnson's Parabolic Equation
			6.7.2 Eccentric Loading
		6.8 Equivalent Element
		6.9 Thermal Effects
		6.10 Stress Concentration Factors
		6.11 Finite Element Method
			6.11.1 Axially Loaded Elements
			6.11.2 Prismatic Beam Element
			6.11.3 Constant Strain Triangle
			6.11.4 General 3D State: Linear Elasticity Problem
			6.11.5 General 3D FE Procedure
			6.11.6 Errors in FE Modeling and Solution
			6.11.7 Some Classical FE Packages
		6.12 Computer‐Aided Design and Optimization
			6.12.1 Beam Synthesis Tablet
			6.12.2 Column Synthesis Tablet
			6.12.3 Optimum Stress Concentration
			6.12.4 Optimum FE Prismatic Beams
			6.12.5 Optimum FE Cantilever Beams
		6.13 Summary
		Problems
		References
		Internet Links
	Chapter 7 Materials Static and Dynamic Strength
		7.1 Material Structure and Failure Modes
			7.1.1 Basic Elements of Material
			7.1.2 Material Failure Modes and Properties
			7.1.3 Tensile Properties
			7.1.4 Other Static Properties
			7.1.5 Other Time‐Dependent Properties
		7.2 Numbering Systems and Designations
			7.2.1 Carbon and Alloy Steels
			7.2.2 Aluminum and Aluminum Alloys
			7.2.3 Other Alloys
				7.2.3.1 Copper and Copper Alloys
				7.2.3.2 Magnesium and Magnesium Alloys
		7.3 Heat Treatment and Alloying Elements
			7.3.1 Heat Treatment
			7.3.2 Case Hardening
			7.3.3 Effect of Alloying Elements
		7.4 Material Propertied and General Applications
			7.4.1 Cast Iron
			7.4.2 Plain and Low‐Alloyed Carbon Steels
				7.4.2.1 Hot Rolled and Cold Drawn Plain‐Carbon Steels
				7.4.2.2 Strength and Hardness of Annealed and Normalized Plain Carbon Steels
				7.4.2.3 Quenched and Tempered Plain Carbon Steels
				7.4.2.4 Quenched and Tempered Low‐Alloy Steels
			7.4.3 Structural Steel
			7.4.4 Stainless Steel
			7.4.5 Tool Steel
			7.4.6 Other Nonferrous Metals
				7.4.6.1 Aluminum and Aluminum Alloys
				7.4.6.2 Copper and Magnesium Alloys
			7.4.7 Other Materials
				7.4.7.1 Plastics
				7.4.7.2 Composites
		7.5 Particular Materials for Machine Elements
			7.5.1 Standard Machine Elements
			7.5.2 Synthesized or Designed Machine Elements
		7.6 Hardness and Strength
		7.7 Failure and Static Failure Theories
			7.7.1 Maximum Normal Stress Theory
			7.7.2 Maximum Shear Stress Theory
			7.7.3 Maximum Distortion Energy Theory (von Mises)
			7.7.4 Other Failure Theories
			7.7.5 Comparison and Applications of Failure Theories
		7.8 Fatigue Strength and Factors Affecting Fatigue
			7.8.1 Fatigue Strength
				7.8.1.1 Estimation of Endurance Limit
				7.8.1.2 Estimation of Fatigue Strength
			7.8.2 Factors Affecting Fatigue Strength
				7.8.2.1 Surface Factor, Ksurf
				7.8.2.2 Size Factor, Ksize
				7.8.2.3 Loading Factor, Kload
				7.8.2.4 Reliability Factor, Kreliab
				7.8.2.5 Temperature Factor, Ktemp
				7.8.2.6 Fatigue Concentration Factor, Kconc
				7.8.2.7 Miscellaneous Factor, Kmiscel
			7.8.3 Cumulative Fatigue Strength
			7.8.4 Fluctuating Stresses
			7.8.5 Fatigue Failure Criteria
		7.9 Fracture Mechanics and Fracture Toughness
			7.9.1 Stress Intensity Factor KI
			7.9.2 Fracture Toughness: Critical Stress Intensity Factor KIC
			7.9.3 Crack Propagation and Life
			7.9.4 Crack Propagation and Real Case Study
		7.10 Computer‐Aided Selection and Optimization
			7.10.1 Material Properties: Carbon Steel
			7.10.2 Fatigue Strength and Factors Affecting Fatigue: Carbon Steel
			7.10.3 Static Strength and Factors of Safety: Carbon Steel
			7.10.4 Optimization for a Specific Factor of Safety: Carbon Steel
		7.11 Summary
		Problems
		References
		Internet Links
		Material Selection
		Material Standards
	Chapter 8 Introduction to Elements and System Synthesis
		8.1 Introduction
		8.2 Basic and Common Machine Elements
			8.2.1 Couplings
				8.2.1.1 Rigid Couplings
				8.2.1.2 Flexible Couplings
				8.2.1.3 Universal Joints
			8.2.2 Keys, Pins, Retaining Rings, and Splines
				8.2.2.1 Keys
				8.2.2.2 Pins and Cotter Pins
				8.2.2.3 Retaining Rings
				8.2.2.4 Splines
			8.2.3 Seals
			8.2.4 Housings, Enclosures, Frames, and Chassis
		8.3 Reverse Engineering
		8.4 Sample Applications
			8.4.1 Initial Bolt Synthesis
			8.4.2 Initial Shaft Synthesis
			8.4.3 Initial Bearing Synthesis
		8.5 Computer‐Aided Design
		8.6 System Synthesis
		8.7 Computer‐Aided Assembly
		8.8 Summary
		Problems
		References
		Internet Links
		Producers and Providers
		Standards and Codes
Part III Detailed Design of Machine Elements
	Part A Basic Joints and Machine Elements
		Chapter 9 Screws, Fasteners, and Permanent Joints
			9.1 Standards and Types
				9.1.1 Thread Terminology and Designation
				9.1.2 Joining Alternative Details
			9.2 Stresses in Threads
			9.3 Bolted Connections
				9.3.1 Threads Under Simple Tensile Load
				9.3.2 Preloading Due to Tightening
				9.3.3 Tightening Torque
			9.4 Bolt Strength in Static and Fatigue
			9.5 Power Screws
				9.5.1 Torque Requirements
				9.5.2 Power Screw Efficiency
				9.5.3 Stresses in Power Screws
				9.5.4 Ball Screws
			9.6 Permanent Joints
				9.6.1 Welding
					9.6.1.1 Welding Types and Symbols
					9.6.1.2 Stresses in Welded Joints
					9.6.1.3 Welding Strength
					9.6.1.4 Resistance Welding
				9.6.2 Bonded Joints
			9.7 Computer‐Aided Design and Optimization
				9.7.1 Threads Under Simple Tensile Load
				9.7.2 Preloading Due to Bolt Tightening
				9.7.3 Preloading, Bolt Tightening, and Fatigue Strength
				9.7.4 Power Screws
				9.7.5 Permanent Weldment Joints
				9.7.6 Optimization
			9.8 Summary
			Problems
			References
			Internet Links
		Chapter 10 Springs
			10.1 Types of Springs
			10.2 Helical Springs
				10.2.1 Geometry, Definitions, and Configurations
				10.2.2 Stresses and Deflections
					10.2.2.1 Static Loading
					10.2.2.2 Dynamic Loading
				10.2.3 Buckling
				10.2.4 Resonance
				10.2.5 Design Procedure
					10.2.5.1 Initial Synthesis
					10.2.5.2 Detailed Design
				10.2.6 Extension Springs
				10.2.7 Torsion Springs
			10.3 Leaf Springs
				10.3.1 Stresses and Deflections
				10.3.2 Design Procedure
					10.3.2.1 Initial Synthesis
					10.3.2.2 Detailed Design
			10.4 Belleville Springs
			10.5 Elastomeric and Other Springs
			10.6 Computer‐Aided Design and Optimization
			10.7 Summary
			Problems
			References
			Internet: Information and Some Manufacturer
			Internet: Images
		Chapter 11 Rolling Bearings
			11.1 Bearing Types and Selection
			11.2 Standard Dimension Series
				11.2.1 Boundary Dimensions
				11.2.2 Bearing Designation Number
			11.3 Initial Design and Selection
			11.4 Bearing Load
				11.4.1 Bearing Life and Reliability
				11.4.2 Load Distribution
				11.4.3 Bearing Load Rating
			11.5 Detailed Design and Selection
				11.5.1 Static Loading
				11.5.2 Combined Loading
				11.5.3 Tapered Roller Bearings
				11.5.4 Unsteady Loading
				11.5.5 Detailed Design Procedure
			11.6 Speed Limits
			11.7 Lubrication and Friction
			11.8 Mounting and Constructional Details
			11.9 Computer‐Aided Design and Optimization
				11.9.1 Initial Ball Bearing Synthesis
				11.9.2 Dynamic Load Rating Estimate
				11.9.3 Ball Bearing Selection
				11.9.4 Rolling Bearing Optimization
			11.10 Summary
			Problems
			References
			Internet
		Chapter 12 Journal Bearings
			12.1 Lubricants
				12.1.1 Lubricant Viscosity
				12.1.2 Lubricant Selection
					12.1.2.1 Stable Lubrication
			12.2 Hydrodynamic Lubrication
				12.2.1 Petroff's Equation
				12.2.2 Journal Bearings
					12.2.2.1 Long Bearing
					12.2.2.2 Short Bearing
					12.2.2.3 Finite Length Bearing
			12.3 Journal Bearing Design Procedure
			12.4 Boundary and Mixed Lubrication
			12.5 Plain Bearing Materials
			12.6 CAD and Optimization
				12.6.1 CAD of Bearing Synthesis Using Knowledge Base Practice
				12.6.2 CAD of Bearing Synthesis Using an Optimization Approach
				12.6.3 Journal Bearing Synthesis Tablet
			12.7 Summary
			Problems
			References
			Internet Link
	Part B Power Transmitting and Controlling Elements
		Chapter 13 Introduction to Power Transmission and Control
			13.1 Prime Movers and Machines
			13.2 Collinear and Noncollinear Transmission Elements
			13.3 Power Control Elements
			13.4 Computer‐Aided Design of a Power Transmission System
			13.5 Summary
			Problems
			References
		Chapter 14 Spur Gears
			14.1 Types and Utility
			14.2 Definitions, Kinematics, and Standards
			14.3 Force Analysis and Power Transmission
			14.4 Design Procedure
				14.4.1 Classical Procedure
				14.4.2 Initial Synthesis
				14.4.3 Detailed Design
					14.4.3.1 Material Set
					14.4.3.2 Bending Fatigue
					14.4.3.3 Surface Fatigue
			14.5 Critical Speed
			14.6 CAD and Optimization
			14.7 Constructional Details
				14.7.1 Gearboxes
				14.7.2 Gear Trains
				14.7.3 Planetary or Epicyclic Gear Trains
			14.8 Summary
			Problems
			References
			Internet Links
		Chapter 15 Helical, Bevel, and Worm Gears
			15.1 Helical Gears
				15.1.1 Types and Utility
				15.1.2 Definitions, Kinematics, and Standards
				15.1.3 Force Analysis
				15.1.4 Design Procedure
					15.1.4.1 Initial Synthesis
					15.1.4.2 Detailed Design
			15.2 Bevel Gears
				15.2.1 Definitions, Kinematics, and Standards
				15.2.2 Force Analysis
				15.2.3 Design Procedure
					15.2.3.1 Initial Design
					15.2.3.2 Detailed Design
					15.2.3.3 Material Set and Safety Factor
			15.3 Worm Gears
				15.3.1 Definitions, Kinematics, and Standards
				15.3.2 Force Analysis
				15.3.3 Design Procedure
					15.3.3.1 Initial Synthesis
					15.3.3.2 Detailed Design
					15.3.3.3 Material Set and Safety Factor
			15.4 Gear Failure Regimes and Remedies
			15.5 Computer‐Aided Design and Optimization
				15.5.1 Helical Gears Synthesis
				15.5.2 Bevel Gears Synthesis
				15.5.3 Worm Gears Synthesis
			15.6 Constructional Details
			15.7 Summary
			Problems
			References
			Internet Links
		Chapter 16 Flexible Elements
			16.1 V‐belts
				16.1.1 V‐belt Drive Relations
				16.1.2 Standards and Geometric Relations
				16.1.3 Design Procedure
					16.1.3.1 Initial Synthesis
					16.1.3.2 Detailed Design Process
			16.2 Flat Belts
				16.2.1 Drive Relations
				16.2.2 Standards and Geometry Relations
				16.2.3 Design Procedure
					16.2.3.1 Initial Synthesis
					16.2.3.2 Detailed Design Process
			16.3 Ropes
				16.3.1 Sizes and Properties
					16.3.1.1 Wire Rope Strength
					16.3.1.2 Other Wire Rope Properties
				16.3.2 Design Procedure
					16.3.2.1 Initial Synthesis
					16.3.2.2 Detailed Design Process
			16.4 Chains
				16.4.1 Standards
					16.4.1.1 Chain Size or Number
					16.4.1.2 Chain Sprockets
				16.4.2 Drive Relations
				16.4.3 Set Dimensions and Constraints
				16.4.4 Design Procedure
					16.4.4.1 Initial Synthesis
					16.4.4.2 Detailed Design Process
			16.5 Friction Drives
			16.6 Flexible Shafts
			16.7 Computer‐Aided Design and Optimization
				16.7.1 V‐belts Synthesis
				16.7.2 Wire Rope Synthesis
				16.7.3 Roller Chains Synthesis
			16.8 Summary
			Problems
			References
			Internet Links
		Chapter 17 Shafts
			17.1 Types of Shafts and Axles
			17.2 Mathematical Model
			17.3 Initial Design Estimate
			17.4 Detailed Design
			17.5 Design for Rigidity
			17.6 Critical Speed
			17.7 Computer‐Aided Design and Optimization
				17.7.1 Shaft Materials
				17.7.2 Computer‐Aided Design of Shafts
				17.7.3 Optimum Design of Shafts
			17.8 Constructional Details
			17.9 Summary
			Problems
			References
			Internet Links
		Chapter 18 Clutches, Brakes, and Flywheels
			18.1 Classifications of Clutches and Brakes
			18.2 Cone Clutches and Brakes
				18.2.1 Uniform Pressure
				18.2.2 Uniform Wear Rate
			18.3 Disk Clutches and Brakes
				18.3.1 Uniform Pressure
				18.3.2 Uniform Wear Rate
				18.3.3 Multi‐disk Clutch‐Brake
					18.3.3.1 Uniform Pressure
					18.3.3.2 Uniform Wear Rate
				18.3.4 Initial Disk Clutch‐Brake Synthesis
			18.4 Caliper Disk Brakes
			18.5 Energy Dissipation and Temperature Rise
				18.5.1 Energy Dissipation
				18.5.2 Temperature Rise
			18.6 Design Process
				18.6.1 Initial Synthesis
				18.6.2 Detailed Design Process
			18.7 Computer‐Aided Design and Optimization
			18.8 Flywheels
			18.9 Constructional Details
			18.10 Summary
			Problems
			References
			Internet Links
Appendix A Figures and Tables
	A.1 Conversion Between US and SI Units
	A.2 Standard SI Prefixes
	A.3 Preferred Numbers and Sizes
	A.4 Standard Rods, or Bars
	A.5 Standard Joining and Retaining Elements
	A.6 Standard Sealing Elements
	A.7 Material Properties
	A.8 Standard Sections or Profiles and Section Properties
Index
EULA




نظرات کاربران