دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Issam El Naqa. Martin J. Murphy
سری:
ISBN (شابک) : 3030830462, 9783030830465
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 529
[514]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 Mb
در صورت تبدیل فایل کتاب Machine and Deep Learning in Oncology, Medical Physics and Radiology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشینی و عمیق در انکولوژی، فیزیک پزشکی و رادیولوژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب که اکنون در ویرایش دوم بهطور گسترده اصلاح شده و بهروزرسانی شده است، یک مرور کلی از یادگیری ماشینی و یادگیری عمیق و نقش آنها در انکولوژی، فیزیک پزشکی و رادیولوژی ارائه میکند. خوانندگان پوشش کاملی از نظریه پایه، روش ها و کاربردهای نمایشی در این زمینه ها پیدا خواهند کرد. یک بخش مقدماتی یادگیری ماشینی و عمیق را توضیح میدهد، روشهای یادگیری را مرور میکند، ارزیابی عملکرد را مورد بحث قرار میدهد و ابزارهای نرمافزار و حفاظت از دادهها را بررسی میکند. سپس بخشهای فردی دقیق به استفاده از ماشین و یادگیری عمیق برای تجزیه و تحلیل تصویر پزشکی، برنامهریزی درمان و تحویل، و مدلسازی نتایج و پشتیبانی تصمیمگیری اختصاص داده میشود. منابعی برای کاربردهای مختلف در هر فصل ارائه شده است و کد نرم افزار به عنوان مناسب برای اهداف توضیحی تعبیه شده است. این کتاب برای دانشجویان و دستیاران فیزیک پزشکی، رادیولوژی و انکولوژی بسیار ارزشمند خواهد بود و همچنین برای پزشکان و محققان با تجربه تر و اعضای جوامع یادگیری ماشین کاربردی تر جذاب خواهد بود.
This book, now in an extensively revised and updated second edition, provides a comprehensive overview of both machine learning and deep learning and their role in oncology, medical physics, and radiology. Readers will find thorough coverage of basic theory, methods, and demonstrative applications in these fields. An introductory section explains machine and deep learning, reviews learning methods, discusses performance evaluation, and examines software tools and data protection. Detailed individual sections are then devoted to the use of machine and deep learning for medical image analysis, treatment planning and delivery, and outcomes modeling and decision support. Resources for varying applications are provided in each chapter, and software code is embedded as appropriate for illustrative purposes. The book will be invaluable for students and residents in medical physics, radiology, and oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.
Foreword to the First Edition Preface to the First Edition Preface to the Second Edition Contents Part I: Introduction to Machine and Deep Learning Principles 1: What Are Machine and Deep Learning? 1.1 Overview 1.2 Background 1.3 Machine Learning Definition 1.4 Deep Learning Definition 1.5 Learning from Data 1.6 Overview of Machine and Deep Learning Approaches 1.7 Quantifying the Data and Learning Objectives 1.8 Application in Biomedicine 1.9 Applications in Radiology and Oncology 1.10 Ethical Challenges in the Application of Machine Learning 1.11 Steps to Machine Learning Heaven 1.12 Conclusions References 2: Computational Learning Theory 2.1 Introduction 2.2 Computational Modeling Versus Statistics 2.3 Learning Capacity 2.4 PAC Learning 2.5 VC Dimension 2.6 Learning with Deep Learning 2.7 Model Complexity Analysis in Practice 2.7.1 Model Order Based on Information Theory 2.7.2 Model Order Based on Resampling Methods 2.8 Conclusions References 3: Conventional Machine Learning Methods 3.1 Introduction 3.2 Unsupervised Learning 3.2.1 Linear Principal Component Analysis 3.2.2 Kernel Principal Component Analysis 3.2.3 Factor Analysis (FA) 3.2.4 Clustering 3.3 Supervised Learning 3.3.1 Logistic Regression 3.3.2 Feed-Forward Neural Networks (FFNN) 3.3.3 General Regression Neural Networks (GRNN) 3.3.4 Kernel-Based Methods 3.3.5 Decision Trees and Random Forests 3.3.6 Bayesian Network 3.3.7 Naive Bayes 3.4 Reinforcement Learning 3.4.1 Reinforcement Learning for Adaptive Liver Cancer Treatment References 4: Overview of Deep Machine Learning Methods 4.1 Introduction 4.2 The Vanilla Neural Network 4.2.1 Training a Neural Network 4.2.2 Hyperparameters Associated with Training 4.2.3 What Makes a Neural Network Deep? 4.2.4 Example: Neural Network for Binary Classification 4.3 Autoencoders 4.4 Convolutional Neural Networks (CNNs) 4.4.1 Convolutions 4.4.2 Pooling 4.5 Recurrent Neural Networks 4.5.1 Long Short-Term Memory (LSTM) 4.5.2 Gated Recurrent Units (GRUs) 4.6 Generative Adversarial Networks (GANs) 4.6.1 Vanilla GANs 4.6.2 Common GAN Variants: DCGAN, WGAN 4.7 Deep Reinforcement Learning (DRL) 4.8 Current Challenges and Future Directions 4.9 Conclusion References 5: Quantum Computing for Machine Learning 5.1 Introduction 5.2 Postulates of Quantum Mechanics 5.3 Quantum Hardware 5.3.1 Quantum Annealers 5.3.2 Universal Quantum Computers 5.4 Common Quantum Computing Algorithms 5.4.1 Grover’s Algorithm 5.4.2 Quantum Phase Estimation 5.4.3 Shor’s Algorithm 5.4.4 Quantum Machine Learning 5.4.4.1 Quantum Support Vector Machines 5.4.4.2 Quantum Principal Component Analysis 5.4.4.3 Quantum Bayesian Network 5.4.4.4 Quantum Neural Network and Deep Learning 5.4.4.5 Quantum Reinforcement Learning 5.5 Application of Quantum Computing in Medical Physics 5.5.1 Optimization and Planning 5.5.2 Outcome Modeling/Decision Making 5.6 Conclusion References 6: Performance Evaluation 6.1 Standard Evaluation Methods for Machine Learning Systems 6.1.1 Choosing an Appropriate Performance Measure 6.1.1.1 Common Metrics Used in all Machine Learning Applications 6.1.1.2 Metrics Used Specifically in Medical Machine Learning Applications 6.1.1.3 Common Metrics Used in Computer Imaging Applications 6.1.2 Choosing an Appropriate Sampling Method 6.1.3 Choosing an Appropriate Statistical Testing Strategy 6.1.3.1 In the Context of a Single Classifier 6.1.3.2 In the Context of Several Classifiers 6.2 Standard Practice in Medical Imaging and Oncology 6.2.1 Review of the Current Practice in Medical Imaging and Oncology 6.2.2 Areas where Improvements Could Be Made 6.2.3 Lessons from the Past References 7: Software Tools for Machine and Deep Learning 7.1 Introduction 7.2 Python-Based Machine Learning Library 7.2.1 Pip and Conda 7.2.2 NumPy and SciPy 7.2.3 Dedicated Machine Learning Libraries 7.2.3.1 Scikit-Learn 7.2.3.2 Shogun 7.2.3.3 mlpy 7.2.3.4 PyMVPA 7.2.3.5 MDP 7.2.3.6 PyBrain 7.2.4 Deep Learning 7.2.4.1 Theano 7.2.4.2 Chainer 7.2.4.3 TensorFlow 7.2.4.4 PyTorch 7.2.4.5 Caffe 7.2.4.6 MXNet 7.2.5 Examples 7.2.6 Benchmark 7.3 Weka 7.4 R 7.5 Matlab 7.6 Cloud-Based Platforms 7.6.1 AWS Deep Learning AMIs and SageMaker 7.6.2 Google Colab 7.6.3 Azure Machine Learning Studio 7.6.4 IBM Watson Machine Learning Studio 7.7 Conclusions References 8: Privacy-Preserving Federated Data Analysis: Data Sharing, Protection, and Bioethics in Healthcare 8.1 Introduction 8.1.1 Data Landscape 8.1.1.1 Structured Data and Unstructured Data 8.1.1.2 Horizontally Partitioned Data and Vertically Partitioned Data 8.2 Prerequisites 8.2.1 Data Extraction 8.2.1.1 ETL Tooling and Data Warehousing 8.2.1.2 Image Biomarker Extraction 8.2.2 Data Representation and FAIR Data Principles 8.2.2.1 Relational Databases and Ontologies 8.2.2.2 Semantic Web, RDF, and Linked Data Resource Description Framework Unique Resource Identifiers and Linked Data Querying Using SPARQL 8.2.2.3 HL7 FHIR and REST-APIs 8.2.3 Network Infrastructure 8.2.3.1 Institutional Infrastructure Traditional ETL and DWH FAIR Data Store Traditional ETL and DWH with a FAIR Store Traditional ETL and DWH with a Virtual FAIR Store Virtual FAIR Store per Institute Virtual FAIR Store per Source and Institute 8.2.3.2 Machine Learning Infrastructure Centralized Machine Learning Infrastructure Distributed Machine Learning Infrastructure: The Personal Health Train 8.2.4 Centralized and Distributed Machine Learning Algorithms 8.2.4.1 Centralized Machine Learning 8.2.4.2 Distributed Machine Learning Horizontal Distributed (Federated) Machine Learning Vertical Distributed (Federated) Learning 8.2.5 Bioethics and Data Protection 8.2.5.1 Bioethics and Data Protection: Individuals 8.2.5.2 Bioethics and Data Protection: Data Entity Pseudonymization Data Obfuscation Data Perturbation 8.2.5.3 Bioethics and Data Protection: Society 8.2.6 Applications and Initiatives 8.2.6.1 Datashield 8.2.6.2 I2B2 8.2.6.3 VATE 8.2.6.4 PCORnet 8.2.6.5 FAIRHealth 8.2.6.6 Personal Health Train Initiatives EuroCAT 20 K Challenge 8.2.7 Summary References Part II: Machine Learning for Medical Image Analysis in Radiology and Oncology 9: Computerized Detection of Lesions in Diagnostic Images with Early Deep Learning Models 9.1 Introduction 9.2 Overview of Architecture of a CADe Scheme 9.3 Machine Learning (ML) in CADe 9.3.1 Feature-Based (Segmented-Object-Based) ML (Classifiers) 9.3.2 Early Deep Learning Models 9.3.2.1 Overview 9.3.2.2 Difference Between Deep Learning and Feature-Based ML (Classifiers) 9.3.2.3 Early Deep Learning Model: Massive-Training Artificial Neural Network (MTANN) 9.4 CADe in Thoracic Imaging 9.4.1 Thoracic Imaging for Lung Cancer Detection 9.4.2 CADe of Lung Nodules in Thoracic CT 9.4.2.1 Overview 9.4.2.2 Illustration of a CADe Scheme 9.4.3 CADe of Lung Nodules in CXR 9.5 CADe in Colonic Imaging 9.5.1 Colonic Imaging for Colorectal Cancer Detection 9.5.2 Overview of CADe of Polyps in CTC 9.6 Summary References 10: Classification of Malignant and Benign Tumors 10.1 Introduction 10.2 Overview of Classification Framework 10.2.1 Perception Modeling 10.2.2 Feature Extraction for Tumor Quantification 10.2.3 Design of Decision Function Using Machine Learning 10.2.4 Deep Learning Methods 10.2.5 CADx Classifier Training and Performance Evaluation 10.3 Application Examples in Mammography 10.3.1 Mammography 10.3.2 Detection of Clustered Microcalcifications in Mammograms 10.3.3 Computer-Aided Diagnosis (CADx) of Microcalcification Lesions in Mammograms 10.3.4 Adaptive CADx Boosted with Content-Based Image Retrieval (CBIR) 10.4 MDS as a Visualization Tool of Example Lesions 10.4.1 Multidimensional Scaling (MDS) Technique 10.4.2 Exploring Similar MC Lesions with MDS 10.5 Issues and Recommendations 10.6 Conclusions References 11: Auto-contouring for Image-Guidance and Treatment Planning 11.1 Introduction 11.2 Traditional Auto-Segmentation Techniques 11.2.1 First-Generation Auto-Segmentation Techniques 11.2.2 Second-Generation Auto-Segmentation Techniques 11.2.3 Third-Generation Auto-Segmentation Techniques 11.3 Deep Learning-Based Auto-Segmentation 11.3.1 Convolutional Neural Networks and Fully Convolutional Networks 11.3.2 Popular Deep Learning Auto-Segmentation Architectures 11.4 Image Segmentation Packages and Publicly Available Datasets 11.4.1 Open-Source Image Segmentation Packages 11.4.2 Publicly Available Datasets 11.4.3 Commercial Systems 11.5 Auto-Segmentation Software Commissioning and Quality Assurance 11.5.1 Auto-Segmentation Evaluation 11.5.2 Patient-Specific Evaluations 11.5.3 Commissioning and QA 11.5.4 Current Limitations to Auto-Segmentation Algorithm Development and Implementation 11.6 Overview of State-of-the-Art Results in Medical Image Auto-Segmentation 11.6.1 Normal Tissues 11.6.1.1 Craniospinal 11.6.1.2 Head and Neck 11.6.1.3 Thoracic 11.6.1.4 Pelvis and Abdomen 11.6.2 Tumors and Clinical Target Volumes 11.6.2.1 Tumors 11.6.2.2 Clinical Target Volumes 11.7 Conclusion References Part III: Machine Learning for Radiation Oncology Workflow 12: Machine Learning Applications in Quality Assurance of Radiation Delivery 12.1 Introduction 12.2 Overview of the Use of Machine Learning in Quality Assurance and Treatment Delivery 12.2.1 Automated Chart Review 12.2.2 Machine Learning Applied to Delivery Systems 12.2.3 Machine Learning Applied to IMRT QA 12.3 Future Directions References 13: Knowledge-Based Treatment Planning 13.1 Introduction 13.2 Anatomical Feature-Based KBP Model 13.2.1 Distance to Target Histogram 13.2.2 Model Training and Validation 13.3 A Robust Ensemble Model with Outlier Filtering Mechanism 13.3.1 An Ensemble KBP Model 13.3.2 Outlier Filtering 13.3.2.1 Anatomical Outliers and Dosimetric Outliers 13.3.2.2 Prediction Performance Measure 13.3.2.3 Model-Based Case Filtering Method 13.3.3 Retrospective Validation 13.4 A KBP Model for Multiple-PTV Plans 13.4.1 Generalized Distance to Target Histogram 13.4.2 Modeling with a gDTH-Based Similarity Metric 13.4.3 Data Augmentation 13.4.4 Training and Validation 13.5 Head and Neck Trade-off KBP Model 13.5.1 Plan Trade-off Modeling 13.5.2 Trade-off Simulation and Validation 13.6 A Complete Workflow for KBP Planning of Whole Breast Radiation Therapy 13.6.1 Digitally Reconstructed Radiograph (DRR)-Based Energy Selection 13.6.2 Anatomy-Driven Fluence Estimation 13.6.3 Patient-Specific Fluence Fine-Tuning 13.6.4 Planning Validation 13.6.4.1 Data Selection 13.6.4.2 Model Training and Validation 13.6.4.3 Plan Quality Comparison 13.6.4.4 Plan Efficiency 13.7 Beam Bouquet Knowledge Model for Lung IMRT Planning 13.7.1 Dissimilarity Metric between Two Beam Bouquets 13.7.2 Establishing the Standardized Beam Bouquets 13.7.3 Validation with Clinical Cases 13.8 Summary References 14: Intelligent Respiratory Motion Management for Radiation Therapy Treatment 14.1 The Problem of Respiratory Movement During Radiotherapy 14.2 Dynamic Compensation Strategies during Delivery 14.3 Using an Artificial Neural Network (ANN) to Model and Predict Breathing Motion 14.4 Basic Neural Network Architecture for Correlation and Prediction 14.4.1 The Single Neuron, or Linear Filter 14.4.2 The Basic Feed-Forward Artificial Neural Network for Prediction 14.4.3 Training the Feed-Forward Network 14.4.4 The Recurrent Network 14.5 Performance of Basic Neural Networks to Predict Tumor Motion 14.5.1 Breathing Prediction Examples for a Simple Feed-Forward Network 14.6 Advanced Neural Network Architectures 14.6.1 Quadratic Neural Unit 14.6.2 Using a Kalman filter to Predict/Correct as Part of the Training Loop 14.6.3 A Network with Multiple Breathing Signal Inputs 14.6.4 Deep Learning Neural Networks for Prediction 14.7 Support Vector Regression (SVR) as an Alternative to Neural Networks for Breathing Prediction 14.8 Probabilistic Neural Networks 14.9 Summary References Part IV: Machine Learning for Outcomes Modeling and Decision Support 15: Prediction of Oncology Treatment Outcomes 15.1 Introduction 15.2 Outcome Modeling in Radiotherapy 15.3 Data Resources 15.3.1 Clinical Data 15.3.2 Dosimetric Data 15.3.3 Radiomics (Imaging Features) 15.3.4 Biological Markers 15.4 Database Technologies for Machine Learning in Oncology 15.5 Pan- Vs. P-OMICs 15.5.1 Spurious Relationship 15.5.2 Echo Chamber Effect 15.5.3 Yule–Simpson Paradox 15.5.4 Ghost Analytics 15.6 Modeling Methods 15.6.1 Bottom-up Approaches for Modeling Oncology Response 15.6.2 Top-Down Approaches for Modeling Oncology Response 15.6.2.1 Logistic Regression A Logistic Outcome Modeling Example 15.6.2.2 Machine Learning Methods A Machine Learning Outcome Modeling Example 15.7 Software Tools for Outcome Modeling 15.8 Discussion 15.9 Future Research Directions 15.10 Conclusion References 16: Radiomics and Radiogenomics 16.1 Introduction 16.2 Technical Basis of Radiomics 16.3 Key Findings and Clinical Applications 16.4 Emerging Paradigms: Deep Learning 16.5 Radiogenomics: Integrating Imaging with Genomics 16.6 Current Challenges and Potential Solutions 16.6.1 Standardization and Quantitative Imaging 16.6.2 Reproducibility and Need for Prospective Validation 16.6.3 Data and Software Sharing 16.7 Conclusion and Future Outlook References 17: Modelling of Radiotherapy Response (TCP/NTCP) 17.1 Introduction 17.1.1 General Considerations 17.2 Tumour Control Probability 17.3 Machine Learning for TCP Modelling 17.4 Example 1: Dosimetric and Clinical Variables 17.4.1 Data Set 17.4.2 Data Exploration 17.4.3 Logistic Regression Modelling Example 17.4.4 Kernel-Based Modelling Example 17.4.5 Comparison with Other Known Models 17.5 Use of Imaging Features 17.6 Use of Biological Markers 17.7 NTCP Modelling 17.7.1 NTCP Models 17.7.2 Dosimetric Data Reduction-Summary Measure 17.8 Machine Learning Approaches to NTCP Modelling 17.8.1 Multivariable Logistic Regression 17.8.2 Feature Selection 17.9 Classical Machine Learning Approaches 17.9.1 Artificial Neural Networks 17.9.2 Support Vector Machines (SVM) 17.9.3 Unsupervised Learning SOM 17.9.4 Bayesian Networks 17.9.5 Decision Trees 17.9.6 Random Forests 17.9.7 Hybrid Models and Comparative Studies 17.10 Deep Learning 17.11 Radiomics and Dosiomics 17.12 Radiogenomics 17.13 Challenges Modelling Radiotherapy Response 17.14 Summary 17.15 Conclusions References 18: Smart Adaptive Treatment Strategies 18.1 Introduction 18.2 Adaptive Treatment in Radiotherapy 18.3 What Knowledge Is Needed for ACT? 18.3.1 Clinical Data 18.3.2 Treatment Data 18.3.3 Imaging Data 18.3.4 Biological Data 18.4 How to Develop Outcome Models Using This Knowledge? 18.5 How to Optimize Adaptation? 18.5.1 Classical MDP/RL Learning 18.5.2 Deep MDP/RL Learning 18.6 ACT Example in Radiotherapy 18.7 Discussion and Recommendation 18.8 Conclusions References 19: Artificial Intelligence in Clinical Trials 19.1 Introduction 19.1.1 Background on Clinical Trials in Oncology and Radiology 19.1.2 Clinical Trials as the Gold Standard for Clinical Practice 19.1.3 Why Do Clinical Trials Fail? 19.2 Types of Clinical Trial Design 19.2.1 Adaptive Clinical Trials 19.3 Artificial Intelligence and Clinical Trial Design 19.3.1 Need for Artificial Intelligence in Clinical Trial Design 19.3.2 The Multiple Roles of Artificial Intelligence (AI) in Clinical Trial Design 19.3.3 Challenges for Artificial Intelligence in Clinical Trial Design 19.3.4 Example Application of Artificial Intelligence in Trial Design (SMART) 19.4 Discussion and Recommendations 19.5 Conclusions References Index