دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Inder J. Bahl
سری:
ISBN (شابک) : 1630819328, 9781630819323
ناشر: Artech House
سال نشر: 2022
تعداد صفحات: 592
[593]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 40 Mb
در صورت تبدیل فایل کتاب Lumped Elements for RF and Microwave Circuits به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب عناصر توده ای برای مدارهای RF و مایکروویو نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این نسخه دوم که کاملاً به روز شده و شامل فصل های کاملاً جدید است، پوشش عمیقی از انواع مختلف عناصر مدار RF و مایکروویو، از جمله سلف ها، خازن ها، مقاومت ها، ترانسفورماتورها، از طریق سوراخ ها، پل های هوایی، و متقاطع ها ارائه می دهد. این کتاب با فرمولهای گسترده برای عناصر یکپارچه، مبادلات طراحی، و فهرست منابع بهروز و جاری، به شما کمک میکند ارزش و سودمندی عناصر یکپارچه را در طراحی اجزا و مدارهای RF، امواج مایکروویو و میلیمتری درک کنید. با استفاده از فناوریهای MIC، MMIC و RFIC، بین عناصر تودهای مستقل و مدارهای آنها برخورد متعادلی خواهید یافت. همچنین اطلاعات دقیقی در مورد RFICهای طیف وسیع تری خواهید یافت که در زمان انتشار اولین نسخه محبوب در دسترس نبودند. این کتاب - در یک جلد تلفیقی - مبانی، معادلات، مدلسازی، مثالها، مراجع و روشهای کلی برای طراحی، آزمایش و تولید اجزای مایکروویو را که امروزه در صنعت و دانشگاه ضروری هستند، ارائه میکند. با سازماندهی عالی و پوشش گسترده این موضوع، این یک منبع ضروری و ضروری برای مهندسان و محققان شاغل در صنعت، دولت و دانشگاه و مهندسان مایکروویو است که در منطقه آنتن کار می کنند. دانشآموزان همچنین با توضیحات واضح، مثالهای فراوان و دستورالعملهای مدلسازی عملی، آن را مرجع مفیدی خواهند یافت.
Fully updated and including entirely new chapters, this Second Edition provides in-depth coverage of the different types of RF and microwave circuit elements, including inductors, capacitors, resistors, transformers, via holes, airbridges, and crossovers. Featuring extensive formulas for lumped elements, design trade-offs, and an updated and current list of references, the book helps you understand the value and usefulness of lumped elements in the design of RF, microwave and millimeter wave components and circuits. You\'ll find a balanced treatment between standalone lumped elements and their circuits using MICs, MMICs and RFICs technologies. You\'ll also find detailed information on a broader range RFICs that was not available when the popular first edition was published. The book captures - in one consolidated volume -- the fundamentals, equations, modeling, examples, references and overall procedures to design, test and produce microwave components that are indispensable in industry and academia today. With its superb organization and expanded coverage of the subject, this is a must-have, go-to resource for practicing engineers and researchers in industry, government and university and microwave engineers working in the antenna area. Students will also find it a useful reference with its clear explanations, many examples and practical modeling guidelines.
Lumped Elements for RF and Microwave Circuits Second Edition Contents Preface Chapter 1 Introduction 1.1 History of Lumped Elements 1.2 Why Use Lumped Elements for RF and Microwave Circuits? 1.3 L, C, R Circuit Elements 1.4 Basic Design of Lumped Elements 1.4.1 Capacitor 1.4.2 Inductor 1.4.3 Resistor 1.5 Lumped-Element Modeling 1.6 Fabrication 1.7 Applications References Chapter 2 Inductors 2.1 Introduction 2.2 Basic Definitions 2.2.1 Inductance 2.2.2 Magnetic Energy 2.2.3 Mutual Inductance 2.2.4 Effective Inductance 2.2.5 Impedance 2.2.6 Time Constant 2.2.7 Quality Factor 2.2.8 Self-Resonant Frequency 2.2.9 Maximum Current Rating 2.2.10 Maximum Power Rating 2.2.11 Other Parameters 2.3 Inductor Configurations 2.4 Inductor Models 2.4.1 Analytical Models 2.4.2 Coupled-Line Approach 2.4.3 Mutual Inductance Approach 2.4.4 Numerical Approach 2.4.5 Measurement-Based Model 2.5 Coupling Between Inductors 2.5.1 Low-Resistivity Substrates 2.5.2 High-Resistivity Substrates 2.6 Electrical Representations 2.6.1 Series and Parallel Representations 2.6.2 Network Representations References Chapter 3 Printed Inductors 3.1 Inductors on Si Substrate 3.1.1 Conductor Loss 3.1.2 Substrate Loss 3.1.3 Layout Considerations 3.1.4 Inductor Model 3.1.5 Q-Enhancement Techniques 3.1.6 Stacked-Coil Inductor 3.1.7 Temperature Dependence 3.2 Inductors on GaAs Substrate 3.2.1 Inductor Models 3.2.2 Figure of Merit 3.2.3 Comprehensive Inductor Data 3.2.4 Q-Enhancement Techniques 3.2.5 Compact Inductors 3.2.6 High Current Handling Capability Inductors 3.3 Printed Circuit Board Inductors 3.4 Hybrid Integrated Circuit Inductors 3.4.1 Thin-Film Inductors 3.4.2 Thick-Film Inductors 3.4.3 LTCC Inductors 3.5 Ferromagnetic Inductors References Chapter 4 Wire Inductors 4.1 Wire-Wound Inductors 4.1.1 Analytical Expressions 4.1.2 Compact High-Frequency Inductors 4.2 Bond Wire Inductor 4.2.1 Single and Multiple Wires 4.2.2 Wire Near a Corner 4.2.3 Wire on a Substrate Backed by a Ground Plane 4.2.4 Wire Above a Substrate Backed by a Ground Plane 4.2.5 Curved Wire Connecting Substrates 4.2.6 Twisted Wire 4.2.7 Maximum Current Handling of Wires 4.3 Wire Models 4.3.1 Numerical Methods for Bond Wires 4.3.2 Measurement-Based Model for Air Core Inductors 4.3.3 Measurement-Based Model for Bond Wires 4.4 Broadband Inductors 4.5 Magnetic Materials References Chapter 5 Capacitors 5.1 Introduction 5.2 Capacitor Parameters 5.2.1 Capacitor Value 5.2.2 Effective Capacitance 5.2.3 Tolerances 5.2.4 Temperature Coefficient 5.2.5 Quality Factor 5.2.6 Equivalent Series Resistance 5.2.7 Series and Parallel Resonances 5.2.8 Dissipation Factor or Loss Tangent 5.2.9 Time Constant 5.2.10 Rated Voltage 5.2.11 Rated Current 5.3 Chip Capacitor Types 5.3.1 Multilayer Dielectric Capacitor 5.3.2 Multiplate Capacitor 5.4 Discrete Parallel Plate Capacitor Analysis 5.4.1 Vertically Mounted Series Capacitor 5.4.2 Flat-Mounted Series Capacitor 5.4.3 Flat-Mounted Shunt Capacitor 5.4.4 Measurement-Based Model 5.5 Voltage and Current Ratings 5.5.1 Maximum Voltage Rating 5.5.2 Maximum RF Current Rating 5.5.3 Maximum Power Dissipation 5.6 Capacitor Electrical Representation 5.6.1 Series and Shunt Connections 5.6.2 Network Representations References Chapter 6 Monolithic Capacitors 6.1 MIM Capacitor Models 6.1.1 Simple Lumped Equivalent Circuit 6.1.2 Single Microstrip-Based Distributed Model 6.1.3 EC Model for MIM Capacitor on Si 6.1.4 EM Simulations of Capacitors 6.2 High-Density Capacitors 6.2.1 Multilayer Capacitors 6.2.2 Ultra-Thin-Film Capacitors 6.2.3 High-K Capacitors 6.2.4 Fractal Capacitors 6.2.5 Ferroelectric Capacitors 6.3 Capacitor Shapes 6.3.1 Rectangular Capacitors 6.3.2 Circular Capacitors 6.3.3 Octagonal Capacitors 6.4 Design Considerations 6.4.1 Q-Enhancement Techniques 6.4.2 Tunable Capacitor 6.4.3 Maximum Power Handling References Chapter 7 Interdigital Capacitors 7.1 Interdigital Capacitor Models 7.1.1 Approximate Analysis 7.1.2 Full-Wave Analysis 7.1.3 Measurement-Based Model 7.2 Design Considerations 7.2.1 Compact Size 7.2.2 Multilayer Capacitor 7.2.3 Q-Enhancement Techniques 7.2.4 Voltage Tunable Capacitor 7.2.5 High-Voltage Operation 7.3 Interdigital Structure as a Photodetector References Chapter 8 Resistors 8.1 Introduction 8.2 Basic Definitions 8.2.1 Power Rating 8.2.2 Temperature Coefficient 8.2.3 Resistor Tolerances 8.2.4 Maximum Working Voltage 8.2.5 Maximum Frequency of Operation 8.2.6 Stability 8.2.7 Noise 8.2.8 Maximum Current Rating 8.3 Resistor Types 8.3.1 Chip Resistors 8.3.2 MCM Resistors 8.3.3 Monolithic Resistors 8.4 High-Power Resistors 8.5 Resistor Models 8.5.1 EC Model 8.5.2 Distributed Model 8.5.3 Meander Line Resistor 8.6 Resistor Representations 8.6.1 Network Representations 8.6.2 Electrical Representations 8.7 Effective Conductivity 8.8 Thermistors References Chapter 9 Via Holes 9.1 Types of Via Holes 9.1.1 Via Hole Connection 9.1.2 Via Hole Ground 9.2 Via Hole Models 9.2.1 Analytical Expression 9.2.2 Quasi-static Method 9.2.3 Parallel Plate Waveguide Model 9.2.4 Method of Momen 9.2.5 Measurement-Based Model 9.3 Via Fence 9.3.1 Coupling Between Via Holes 9.3.2 Radiation from Via Ground Plug 9.4 Plated Heat Sink Via 9.5 Via Hole Layout 9.6 Silicon Vias References Chapter 10 Airbridges and Dielectric Crossovers 10.1 Airbridge and Crossov 10.2 Analysis Techniques 10.2.1 Quasi-static Method 10.2.2 Full-Wave Analysis 10.3 Models 10.3.1 Analytical Model 10.3.2 Measurement-Based Model References Chapter 11 Inductor Transformers and Baluns 11.1 Basic Theory 11.1.1 Parameters Definition 11.1.2 Analysis of Transformers 11.1.3 Ideal Transformers 11.1.4 Equivalent Circuit Representation 11.1.5 Equivalent Circuit of a Practical Transformer 11.1.6 Wideband Impedance Matching Transformers 11.1.7 Types of Transformers 11.2 Wire-Wrapped Transformers 11.2.1 Tapped Coil Transformers 11.2.2 Bond Wire Transformer 11.3 Transmission-Line Type Transformers 11.4 Parallel Conductor Winding Transformers on Si Substrate 11.5 Spiral Transformers on GaAs Substrate 11.6 Baluns 11.6.1 Lumped-Element LP/HP Filter Baluns 11.6.2 Lumped-Element Power Divider and 180◦ Hybrid Baluns 11.6.3 Coil Transformer Baluns 11.6.4 Transmission-Line Baluns 11.6.5 Marchand Baluns 11.6.6 Common-Mode Rejection Ratio References Chapter 12 Lumped-Element Passive Components 12.1 Impedance Matching Techniques 12.1.1 One-Port and Two-Port Networks 12.1.2 Lumped-Element Narrowband Matching Techniques 12.1.3 Lumped-Element Wideband Matching Techniques 12.2 90◦ Hybrids 12.2.1 Broadband 3-dB 90◦ Hybrid 12.2.2 Reconfigurable 3-dB 90◦ Hybrid 12.2.3 Dual-Band 3-dB 90◦ Hybrid 12.2.4 Differential 3-dB 90◦ Hybrid 12.3 180◦ Hybrids 12.3.1 Compact Lumped-Element 3-dB 180◦ Hybrid 12.3.2 Wideband Lumped-Element Differential 3-dB 180◦ Hybrids 12.4 Directional Couplers 12.4.1 Transformer Directional Couplers 12.4.3 Differential Directional Couplers 12.4.4 Directional Coupler with Impedance Matching 12.5 Power Dividers/Combiners 12.5.1 Power Dividers with 90◦ and 180◦ Phase Difference 12.5.2 Broadband 2-Way and 4-Way Power Dividers 12.5.3 Compact 2-Way and 4-Way Power Dividers 12.5.4 Dual-Band Power Dividers 12.5.5 Differential Power Dividers 12.6 Filter 12.6.1 Ceramic Lumped-Element LTCC Bandpass Filters 12.6.2 Dual-Band Filters 12.6.3 Reconfigurable and Switchable Filters 12.6.4 High Selectivity Compact BPF 12.6.5 Differential-Mode and Common-Mode Rejection Filters 12.6.6 Tunable BPF with Constant Bandwidth 12.6.7 Compact Si Bandpass Filter 12.6.8 Compact CMOS Bandpass Filters 12.7 Biasing Networks 12.7.1 Biasing of Diodes and Control Components 12.7.2 Biasing of Active Circuits References Chapter 13 Lumped-Element Control Components 13.1 Switches 13.1.1 Switch Configurations 13.1.2 Broadband Switches 13.1.3 MESFET Switches 13.1.4 HEMT Switches 13.1.5 CMOS Switches 13.1.6 GaN HEMT Switches 13.1.7 Comparison of Switch Technologies 13.2 Phase Shifters 13.2.1 Types of Phase Shifters 13.2.2 Switched-Network Phase Shifters 13.2.3 Multibit Phase Shifter Circuits 13.2.4 MESFET/HEMT Multibit Phase Shifters 13.2.5 CMOS Phase Shifters 13.2.6 Analog Phase Shifters 13.2.7 Broadband Phase Shifters 13.2.8 Ultrawideband Phase Shifters 13.2.9 Millimeter-Wave Phase Shifters 13.2.10 Active Phase Shifters 13.3 Attenuators 13.3.1 Attenuator Configurations 13.3.2 Multibit Attenuators 13.3.3 GaAs MMIC Step Attenuators 13.3.4 Si CMOS Step Attenuators 13.3.5 Variable Voltage Attenuators 13.3.6 GaN HEMT Attenuator 13.3.7 Phase Compensated Attenuators 13.3.8 CMOS Attenuator with Integrated Switch 13.4 Limiters 13.4.1 Limiter Types 13.4.2 Diode Limiter Circuits 13.4.3 FET Switch Limiter Circuits 13.4.4 Matched Limiters 13.4.5 Limiter/LNA References Chapter 14 Lumped-Element Active Circuits 14.1 Amplifiers 14.1.1 Low-Noise Amplifiers 14.1.2 Power Amplifiers 14.1.3 Differential Amplifiers 14.1.4 Buffer Amplifiers 14.2 Oscillators 14.2.1 Oscillator Configurations 14.2.2 Operation of Oscillators 14.2.3 Phase Noise in Oscillators 14.2.4 Oscillator Design 14.2.5 GaAs HEMT and HBT-HEMT Based VCOs 14.2.6 Si-Based VCOs 14.3 Mixers 14.3.1 Passive Mixer Circuits 14.3.2 Active Mixer Circuits 14.4 Frequency Multipliers 14.4.1 Introduction 14.4.2 Diode Multipliers 14.4.3 Transistor Multipliers 14.4.4 Frequency Doublers 14.4.5 Frequency Triplers 14.4.6 Frequency Quadrupler and Higher-Order Multipliers 14.5 Frequency Dividers 14.5.1 Regenerative Frequency Dividers 14.5.2 Injection-Locked Frequency Dividers 14.5.3 Divide-by-3 Injection-Locked Frequency Dividers 14.5.4 Divide-by-4 and Higher-Order Dividers 14.6 Other Active Circuits 14.6.1 Active Baluns 14.6.2 Active Inductors 14.6.3 Active Capacitors 14.6.4 Active Filters 14.6.5 Active Circulators References About the Author Index