دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2022
نویسندگان: Vasilis Pagonis
سری:
ISBN (شابک) : 3030967972, 9783030967970
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 409
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Luminescence Signal Analysis Using Python به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل سیگنال لومینسانس با استفاده از پایتون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Using the Python Codes in this Book The New Nomenclature Used in this Book How This Book is Organized Acknowledgments Contents Acronyms List of Codes 1 Overview of Luminescence Signals from Dosimetric Materials 1.1 Introduction 1.2 Irradiation of Solids: Electron Traps, Hole Traps and Recombination Centers 1.3 Thermoluminescence (TL) Experiments and Models 1.4 Isothermal Luminescence (ITL) Experiments and Models 1.5 Optically Stimulated Luminescence (OSL) Experiments and Models 1.6 Infrared Stimulated Luminescence (IRSL) Experiments and Models 1.7 Time-resolved (TR) Luminescence Experiments and Models 1.8 ESR and OA Experiments: Correlations with Luminescence Signals 1.9 What Information Can We Extract from Luminescence Signals? References 2 TL from Delocalized Transitions: Models 2.1 Introduction 2.2 The Simplest TL Model (OTOR) 2.3 Varying the Parameters In the OTOR Model 2.4 The FOK-TL Equation for First Order Kinetics 2.5 Simulation of the Dose Response of TL Peaks Following First Order Kinetics 2.6 Second Order Kinetics in Luminescence Processes 2.7 The FOK-TL, FOK-ITL, FOK-CW and FOK-LM Equations 2.8 The Geometrical Shape Factor 2.9 The Initial Rise Method for Estimating E 2.10 The Effect of Heating Rate on the TL Glow Curve 2.11 The Heating Rate Method of Finding the Kinetic Parameters E,s 2.12 The Empirical General Order Kinetics (GOK) Equation 2.13 The GOK-TL, GOK-ITL, GOK-CW and GOK-LM Equations 2.14 The General One Trap Equation (GOT) 2.15 Analytical Solution of The GOT Equation: The KV Equation 2.16 The KV-TL, KV-ITL, KV-CW And KV-LM Equations 2.17 Mixed Order Kinetics and The IMTS Model 2.18 General Analytical Solution of the MOK Model 2.19 The MOK-TL, MOK-ITL, MOK-CW and MOK-LM Equations 2.20 Recommended Protocols for Analyzing TL Data References 3 TL Signals from Delocalized Transitions: Data Analysis 3.1 Introduction 3.2 Introduction to the Deconvolution of TL Glow Curves 3.3 CGCD Equations and Their Transformed Equivalents 3.4 Using the Python Package Optimize and the Function Curve_fit() 3.5 CGCD Using the Original FOK-TL (Randall-Wilkins) Equation 3.6 CGCD Using the Transformed FOK-TL Equation 3.7 CGCD Using the Original GOK-TL Equation 3.8 CGCD Using the Transformed GOK-TL Equation 3.9 CGCD Using the Original KV-TL Equation 3.10 CGCD Using the Transformed KV-TL Equation 3.11 CGCD Using the MOK-TL Equation 3.12 CGCD Using the Transformed MOK-TL Equation 3.13 CGCD of Multipeak Data Using the Transformed KV-TL Equation 3.14 CGCD of Multipeak Data Using the Transformed GOK-TL Equation 3.15 CGCD of LiF Glow Curve Using the Transformed KV-TL Equation 3.16 CGCD of LiF Glow Curve Using the Transformed GOK-TL Equation References 4 TL from Quantum Tunneling Processes: Models 4.1 Introduction 4.2 Delocalized Versus Localized Transition Models for Luminescence 4.3 Quantum Tunneling and the Distribution of Nearest Neighbors 4.4 Overview of Four TLT Models with First Order Kinetics 4.5 Ground State Tunneling—The Anomalous Fading Effect 4.6 Approximate Analytical Solution of the GST Model: The Huntley Equation 4.7 Anomalous Fading and the Value of the Acceptor Density ρ 4.8 Simultaneous Ground State Tunneling and Irradiation of the Sample 4.9 The Approximate Analytical Equation for the Dose Response of the IGST Model 4.10 Excited State Tunneling Phenomena (EST Model) 4.11 Quantum Tunneling and TL Signals in the EST Model 4.12 Simulation of TL Signal from Unfaded Samples in the EST Model 4.13 Simulation of The Remnant TL (RTL) Using the GST and EST Models 4.14 The Kitis-Pagonis (KP) Analytical Solution of the EST Model 4.15 The KP-TL, KP-ITL, KP-CW and KP-LM Equations 4.16 The TA-EST Model for Low Temperature Thermochronometry References 5 TL from Quantum Tunneling Processes: Data Analysis 5.1 Introduction 5.2 Example of Analyzing Experimental Data for the Anomalous Fading Effect 5.3 Fitting Single-Peak TL Data From Unfaded Samples Using the KP-TL Equation 5.4 Fitting Multiple-Peak TL Data from Unfaded Samples Using the KP-TL Equation 5.5 The Transformed KP-TL Equation 5.6 Finding the Optimal Number of TL Components in Feldspars References 6 ITL Signals: Models 6.1 Introduction 6.2 Overview of ITL Signals And the Challenges They Present 6.3 A Comparative Study of ITL and TL Signals in MBO and LBO Dosimeters 6.4 The FOK-ITL Equation For CCDA Analysis of ITL Signals 6.5 The KV-ITL Equation for CCDA Analysis of ITL Signals 6.6 The MOK-ITL Equation for CCDA Analysis of ITL Signals 6.7 The GOK-ITL Equation for CCDA Analysis of ITL Signals 6.8 The KP-ITL Equation for CCDA Analysis of ITL Signals 6.9 Summary of ITL Analytical Equations References 7 ITL Signals: Data Analysis 7.1 Introduction 7.2 General Considerations for the Analysis of Isothermal Luminescence Signals 7.3 Analysis of ITL Signals Using the FOK-ITL Equation 7.4 Analysis of ITL Signals Using The KV-ITL Equation 7.5 Analysis of ITL Signals Using the MOK-ITL Equation 7.6 Analysis of ITL Signals Using the GOK-ITL Equation 7.7 Analysis of ITL Signals Using the KP-ITL Equation 7.8 The TL-like Presentation of ITL and CW-OSL Signals References 8 OSL from Delocalized Transitions: Models 8.1 Introduction 8.2 Overview of CW-OSL and LM-OSL Signals, and Associated Models 8.3 The FOK-CW Equation for CCDA of CW-OSL Signals 8.4 The KV-CW Equation for CCDA of CW-OSL Signals 8.5 The MOK-CW Equation for CW-OSL Signals 8.6 The GOK-CW Equation for CCDA of CW-OSL Signals 8.7 The KP-CW Equation for CCDA of CW-IRSL Signals 8.8 The FOK-LM Equation for CCDA of LM-OSL Signals 8.9 The KV-LM Equation for CCDA of LM-OSL Signals 8.10 The MOK-LM Equation for CCDA of LM-OSL Signals 8.11 The GOK-LM Equation for CCDA of LM-OSL Signals 8.12 The KP-LM Equation for CCDA of LM-IRSL Signals 8.13 Transforming CW-OSL into Pseudo-LM-OSL Signals References 9 OSL from Delocalized Transitions: Data Analysis 9.1 Introduction 9.2 General Considerations for Analyzing CW-OSL Signals 9.3 Using the FOK-CW Equation for Analyzing CW-OSL/CW-IRSL Data 9.4 Using the KV-CW Equation for Analyzing CW-OSL Signals 9.5 Using the MOK-CW Equation for Analyzing CW-OSL/CW-IRSL Signals 9.6 Using the GOK-CW Equation for Analyzing CW-OSL Signals 9.7 Using the KP-CW Equation for Analyzing CW-OSL Signals 9.8 Using the FOK-LM Equation for Analyzing LM-OSL Signals 9.9 Using the Transformed FOK-LM Equation for Analyzing LM-IRSL Signals 9.10 Using the KV-LM Equation for Analyzing LM-OSL Signals 9.11 Using the MOK-LM Equation for Analyzing LM-OSL Signals 9.12 Using the Transformed MOK-LM Equation for Analyzing LM-OSL Signals 9.13 Using the GOK-LM Equation for Analyzing LM-OSL Signals 9.14 Using the Transformed GOK-LM Equation for Analyzing LM-OSL Signals 9.15 Using the KP-LM Equation for CCDA of LM-IRSL Signals 9.16 Transforming CW-IRSL Signals into Peak-Shaped Signals 9.17 Recommended Protocols for Analyzing OSL Data References 10 Infrared Stimulated Luminescence Signals: Models 10.1 Introduction 10.2 Introduction to IRSL Signals—the EST Model 10.3 Description of Luminescence Signals Within the EST Model 10.4 The TL Glow Curve as the Sum of Partial TL Glow Curves 10.5 The CW-IRSL Signal as the Sum of Partial CW-IRSL Curves 10.6 The LM-IRSL Signal as the Sum of Partial LM-IRSL Curves 10.7 CCDA Using the KP-CW and KP-LM Equations 10.8 The Stretched Exponential Equation References 11 Infrared Stimulated Luminescence Signals: Data Analysis 11.1 Introduction 11.2 Fitting CW-IRSL Data Using the KP-CW Equation 11.3 Fitting LM-IRSL Data Using the KP-LM Equation 11.4 Fitting TL Data Using the KP-TL Equation 11.5 Fitting CW-IRSL Signals with the Stretched Exponential Equation 11.6 CW-IRSL Signals Measured at Higher Stimulation Temperature References 12 Time-Resolved Luminescence: Models 12.1 Introduction 12.2 Examples of TR Luminescence Signals - Thermal Quenching 12.3 TR Signals and Thermal Quenching - The Mott-Seitz Mechanism 12.4 A Model for TR-Photoluminescence (TR-PL) Experiments in Al2O3:C 12.5 TR-IRSL Experiments: Analytical Equations from the EST Model References 13 Time-Resolved Luminescence: Data Analysis 13.1 Introduction 13.2 Analysis of TR Signals Using the FOK-TR Equations 13.3 The Effect of Thermal Quenching on the TL Glow Curve 13.4 Evaluating the Thermal Quenching Parameters C, W and Eth 13.5 Analysis of TR-IRSL Data from Feldspars 13.6 Analysis of TR Data Using the Stretched Exponential References 14 Dose Response of Dosimetric Materials: Models 14.1 Introduction 14.2 Mathematical Expressions for Dose Response of Luminescence Signals 14.3 Nonlinear Dose Response of ESR, TL and OSL Signals 14.4 Dose Response in the OTOR Model: The PKC Analytical Solution 14.5 Competition During the Irradiation Stage: The PKC-S Equation 14.6 Analytical Equations for the Supralinearity Index f(D) References 15 Dose Response of Luminescence Signals: Data Analysis 15.1 Introduction 15.2 ESR and OA Experiments: Correlations with Luminescence Signals 15.3 Fitting Dose Response Data Using the SE and PKC-Equations 15.4 Fitting Dose Response Data Using the PKC, SE and DSE Equations 15.5 Fitting of Superlinear Experimental Data Using the Lambert Equation References Appendix Index Index