دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Shiren Wang (editor)
سری:
ISBN (شابک) : 0128236906, 9780128236901
ناشر: Woodhead Publishing
سال نشر: 2022
تعداد صفحات: 266
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 37 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Low-Grade Thermal Energy Harvesting: Advances in Materials, Devices, and Emerging Applications (Woodhead Publishing Series in Electronic and Optical Materials) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب برداشت انرژی حرارتی با درجه پایین: پیشرفت در مواد، دستگاهها و کاربردهای نوظهور (مجموعه انتشارات Woodhead در مواد الکترونیکی و نوری) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
برداشت انرژی حرارتی با درجه پایین: پیشرفتها در ترموالکتریک، مواد و کاربردهای نوظهور مفاهیم اساسی و کلیدی پیرامون تبدیل انرژی حرارتی درجه پایین را در اختیار خوانندگان قرار میدهد و در عین حال آخرین دستورالعملهای تحقیقاتی را نیز مرور میکند. . این کتاب امیدوارکنندهترین و نوظهورترین فناوریها را برای بازیابی، برداشت و تبدیل حرارت با درجه پایین، از جمله ترموالکتریکهای پوشیدنی و ترموالکتریکهای آلی، پوشش میدهد. هر فصل شامل مواد کلیدی، اصول، طراحی و راهبردهای ساخت برای بازیابی حرارت با درجه پایین است. توجه ویژه به مواد در حال ظهور مانند کامپوزیت های آلی، مواد دو بعدی و نانومواد نیز شامل می شود. این کتاب بر مواد و ساختارهای دستگاهی تأکید میکند که انرژی الکترونیک پوشیدنی و لوازم الکترونیکی مصرفی را قادر میسازد.
این کتاب برای دانشمندان و مهندسان مواد در دانشگاه و تحقیق و توسعه در تولید، صنعت، مناسب است. انرژی و الکترونیک.
Low-Grade Thermal Energy Harvesting: Advances in Thermoelectrics, Materials, and Emerging Applications provides readers with fundamental and key concepts surrounding low-grade thermal energy conversion while also reviewing the latest research directions. The book covers the most promising and emerging technologies for low-grade heat recovery, harvesting and conversion, including wearable thermoelectrics and organic thermoelectrics. Each chapter includes key materials, principles, design and fabrication strategies for low-grade heat recovery. Special attention on emerging materials such as organic composites, 2D materials and nanomaterials are also included. The book emphasizes materials and device structures that enable the powering of wearable electronics and consumer electronics.
The book is suitable for materials scientists and engineers in academia and R&D in manufacturing, industry, energy and electronics.
Front cover Half title Full title Copyright Contents Contributors 1 - Principles of low-grade heat harvesting 1.1 Motivation 1.2 Working principles of low-grade heat harvesting 1.2.1 Thermodiffusion effect 1.2.2 Seebeck effects 1.2.3 Ionic Soret effects 1.2.4 Thermal electrochemical effects 1.3 Performance characterization and comparison 1.3.1 Thermopower 1.3.2 Power density 1.3.3 Working mode References 2 - Stretchable thermoelectric materials/devices for low-grade thermal energy harvesting 2.1 Introduction 2.2 What is stretchability? 2.3 Organic stretchable TE materials 2.3.1 Intrinsically stretchable TE materials 2.3.2 Composite stretchable TE materials 2.3.2.1 Plasticizers compounded stretchable TE materials 2.3.2.2 Elastomers compounded stretchable TE materials 2.3.2.3 Simultaneously blending plasticizers and elastomers with TE materials 2.3.3 Substrate-dependent stretchable TE materials 2.3.3.1 Elastomer substrate-based stretchable TE materials 2.3.3.2 Textile substrate-based stretchable TE materials 2.4 Gel-based stretchable TE materials 2.4.1 Ionic gel-based stretchable TE material 2.4.1.1 IL-based stretchable TE ionic gel 2.4.1.2 Conducting polymer-based stretchable TE ionic gel 2.4.1.3 Redox couple-based stretchable TE ionic gel 2.4.2 Aerogel-based stretchable TE materials 2.5 Architectural strategies for stretchable thermoelectric devices 2.5.1 Directly assembling stretchable TE materials 2.5.2 Geometric engineering 2.5.3 Bridge-island structure design 2.5.4 Specific weaving technique 2.6 Potential applications of stretchable thermoelectric materials/devices in low-grade energy harvesting field 2.6.1 Stretchable energy harvesters 2.6.2 Self-powered sensors 2.6.2.1 Self-powered strain sensors 2.6.2.2 Self-powered multisensors 2.7 Conclusion and outlook References 3 - Wearable power generation via thermoelectric textile 3.1 Introduction 3.2 Fabrication of fiber/yarn-shaped thermoelectric materials 3.2.1 Wet spinning and gelation spinning 3.2.2 Thermal drawing 3.2.3 Drop casting and dip coating 3.2.4 Thermal evaporation and magnetron sputtering 3.3 Thermoelectric textiles 3.3.1 2D thermoelectric textiles 3.3.2 3D thermoelectric textiles 3.4 Thermoelectric cooling textiles 3.5 Thermoelectric passive sensing textiles 3.6 Outlook References 4 - Thermoelectric ionogel for low-grade heat harvesting 4.1 Introduction 4.2 Fundamental principles of ionic thermoelectric conversion systems 4.2.1 Thermodiffusion cell 4.2.1.1 Thermodiffusion effect 4.2.1.2 Electrolyte- and gelation-dependent thermopower 4.2.1.3 Capacitive working mode of thermodiffusion cell 4.2.2 Thermogalvanic cell 4.2.2.1 Thermogalvanic effect 4.2.2.2 Working mode and redox couples of thermogalvanic cell 4.2.2.3 Modification and gelation of thermogalvanic cell 4.2.3 Synergistic thermodiffusion and thermogalvanic effect 4.3 Preparation and applications of thermoelectric ionogel 4.3.1 Preparation of thermoelectric ionogel 4.3.1.1 Gelling agenting materials 4.3.1.2 Gelation methods 4.3.2 Electrode materials in thermoelectric ionogel 4.3.2.1 Electrodes for thermodiffusion cell 4.3.2.2 Electrodes for thermogalvanic cell 4.3.3 Series stacking and applications 4.3.3.1 ‘‘z-’’ series-connected half-cells 4.3.3.2 n- and p-type thermocell connected in series 4.4 Challenges and opportunities References 5 - Osmotic heat engines for low-grade thermal energy harvesting 5.1 Introduction 5.2 Fundamental principles of thermo-osmotic systems 5.2.1 Comparison of ion flow rate driven by ion concentration gradient (∆c) and temperature gradient (∆T) 5.2.2 Thermal separation-salinity gradient power generation 5.2.3 Thermal separation techniques 5.2.3.1 Vacuum distillation (VD) 5.2.3.2 Membrane distillation (MD) 5.2.3.3 Thermolysis (TL) 5.2.3.4 Thermal precipitation-dissolution of saturated aqueous solutions 5.2.4 Salinity gradient power generation techniques 5.2.4.1 Pressure-retarded osmosis (PRO) 5.2.4.2 Reverse electrodialysis 5.2.4.3 Capacitive mixing (CapMix) 5.2.4.4 Concentration redox-flow batteries (CRFB) 5.3 Thermo-osmotic ionogel 5.3.1 Working principles 5.3.2 Osmotic-electric power generation 5.3.3 Osmotic-electric conversion efficiency 5.3.4 Devices integration and applications 5.4 Challenges and opportunities References 6 - Liquid-based electrochemical systems for the conversion of heat to electricity 6.1 Introduction 6.2 Thermogalvanic cell 6.3 Thermally regenerative electrochemical cycles 6.3.1 Thermal capacitive electrochemical cycle (TCEC): Electrical double-layer-based cycle 6.3.2 Redox flow battery 6.3.3 Thermal regenerative ammonia-based battery 6.3.4 Direct thermal charging cell 6.4 Thermo-osmotic energy conversion 6.5 Summary and perspectives References 7 - Liquid-state thermocells for low-grade heat harvesting 7.1 Introduction 7.1.1 Theories of thermocells 7.1.2 Overview of current research states and progresses 7.2 Advances in thermocells 7.2.1 Strategies of improving conversion efficiency of single cells 7.2.1.1 Enhancement of Seebeck coefficient 7.2.1.2 Enhancement of electrical conductivity 7.2.1.3 Suppression of thermal conductivity 7.2.2 Devices integration and applications 7.2.2.1 Devices integration 7.2.2.2 Flexible devices 7.2.2.3 Applications 7.3 Challenges and opportunities References 8 - Bimetallic thermally-regenerative ammonia batteries 8.1 Introduction 8.2 Working principle 8.3 Temperature effects 8.4 Decoupled electrolytes 8.5 Flow batteries 8.6 Summary and outlook References 9 - Iron perchlorate electrolytes and nanocarbon electrodes related to the redox reaction 9.1 Introduction to thermocells 9.2 Temperature coefficient of electrochemical redox potential 9.3 Evaluation of the electrolyte performance 9.4 Capability of power generation of thermocells 9.5 Summary References 10 - Thermal energy harvesting using thermomagnetic effect 10.1 Introduction 10.2 Working principle of thermomagnetic energy harvesting 10.3 Thermodynamics of thermomagnetic cycle 10.4 Thermomagnetic materials 10.5 Thermomagnetic energy harvesters 10.6 Summary and future perspective References 11 - Salt hydrate-based composite materials for thermochemical energy storage 11.1 Introduction 11.2 Salt requirements and screening processes of salt hydrates 11.3 State of the art on salt-based composite materials for thermochemical energy storage 11.3.1 Expanded natural graphite 11.3.2 Vermiculite 11.3.3 Rocks, ceramics, and minerals 11.3.4 Activated carbon 11.3.5 Activated alumina 11.3.6 Polymers 11.3.7 Metal organic frameworks 11.3.8 Zeolites 11.3.9 Silicas 11.4 Limitations and considerations when designing composite materials 11.5 Conclusion References Index Back cover