دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Early Release ed.]
نویسندگان: Gwendolyn Stripling and Michael Abel
سری:
ISBN (شابک) : 9781098146825, 9781098146764
ناشر: O'Reilly Media, Inc.
سال نشر: 2023
تعداد صفحات:
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 Mb
در صورت تبدیل فایل کتاب Low-Code AI A Practical Project-Driven Introduction to Machine Learning به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی کم کد مقدمه ای عملی پروژه محور برای یادگیری ماشین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Who Should Read This Book? What Is and Isn’t in This Book Conventions Used in This Book Using Code Examples O’Reilly Online Learning How to Contact Us Acknowledgments 1. How Data Drives Decision Making in Machine Learning What Is the Goal or Use Case? An Enterprise ML Workflow Defining the Business Objective or Problem Statement Data Collection Data Preprocessing Data Analysis Data Transformation and Feature Selection Researching the Model Selection or Using AutoML (a No-Code Solution) Model Training, Evaluation, and Tuning Model Testing Model Deployment (Serving) Maintaining Models Summary 2. Data Is the First Step Overview of Use Cases and Datasets Used in the Book 1. Retail: Product Pricing 2. Healthcare: Heart Disease Campaign 3. Energy: Utility Campaign 4. Insurance: Advertising Media Channel Sales Prediction 5. Financial: Fraud Detection 6. Energy: Power Production Prediction 7. Telecommunications: Customer Churn Prediction 8. Automotive: Improve Custom Model Performance Data and File Types Quantitative and Qualitative Data Structured, Unstructured, and Semistructured Data Data File Types How Data Is Processed An Overview of GitHub and Google’s Colab Use GitHub to Create a Data Repository for Your Projects 1. Sign up for a new GitHub account 2. Set up your project’s GitHub repo Using Google’s Colaboratory for Low-Code AI Projects 1. Create a Colaboratory Python Jupyter Notebook 2. Import libraries and dataset using Pandas 3. Data validation 4. A little bit of exploratory data analysis Summary 3. Machine Learning Libraries and Frameworks No-Code AutoML How AutoML Works Machine Learning as a Service Low-Code ML Frameworks SQL ML Frameworks Google’s BigQuery ML Amazon Aurora ML and Redshift ML Open Source ML Libraries AutoKeras Auto-Sklearn Auto-PyTorch Summary 4. Use AutoML to Predict Advertising Media Channel Sales The Business Use Case: Media Channel Sales Prediction Project Workflow Project Dataset Exploring the Dataset Using Pandas, Matplotlib, and Seaborn Load Data into a Pandas DataFrame in a Google Colab Notebook Explore the Advertising Dataset Descriptive analysis: Check the data Explore the data Heat maps (correlations) Scatterplots Histogram distribution plot Export the advertising dataset Use AutoML to Train a Linear Regression Model No-Code Using Vertex AI Create a Managed Dataset in Vertex AI Select the Model Objective Build the Training Model Evaluate Model Performance Model Feature Importance (Attribution) Get Predictions from Your Model Summary 5. Using AutoML to Detect Fraudulent Transactions The Business Use Case: Fraud Detection for Financial Transactions Project Workflow Project Dataset Exploring the Dataset Using Pandas, Matplotlib, and Seaborn Loading Data into a Pandas DataFrame in a Google Colab Notebook Exploring the Dataset Descriptive analysis Exploratory analysis Exporting the Dataset Classification Models and Metrics Using AutoML to Train a Classification Model Creating a Managed Dataset and Selecting the Model Objective Exploring Dataset Statistics Training the Model Evaluating Model Performance Model Feature Importances Getting Predictions from Your Model Summary 6. Using BigQuery ML to Train a Linear Regression Model The Business Use Case: Power Plant Production Cleaning the Dataset Using SQL in BigQuery Loading a Dataset into BigQuery Exploring Data in BigQuery Using SQL Using the Null function to check for null values Using the Min and Max functions to determine acceptable data ranges Saving query results using a DDL statement in BigQuery Linear Regression Models Feature Selection and Correlation Google Colaboratory Plotting Feature Relationships to the Label The CREATE MODEL Statement in BigQuery ML Using the CREATE MODEL statement View evaluation metrics of the trained model Using the ML.PREDICT function to serve predictions Introducing Explainable AI Explainable AI in BigQuery ML Modifying the CREATE MODEL statement Using the ML.GLOBAL_EXPLAIN function Using the ML.EXPLAIN_PREDICT function to compute local explanations Exercises Neural Networks in BigQuery ML Brief Overview of Neural Networks Activation Functions and Nonlinearity Training a Deep Neural Network in BigQuery ML Exercises Deep Dive: Using Cloud Shell to View Your Cloud Storage File Summary 7. Training Custom ML Models in Python The Business Use Case: Customer Churn Prediction Choosing Among No-Code, Low-Code, or Custom Code ML Solutions Exploring the Dataset Using Pandas, Matplotlib, and Seaborn Loading Data into a Pandas DataFrame in a Google Colab Notebook Understanding and Cleaning the Customer Churn Dataset Checking and converting data types Exploring summary statistics Exploring combinations of categorical columns Exploring interactions between numeric and categorical columns Transforming Features Using Pandas and Scikit-Learn Feature selection Encoding categorical features using scikit-learn Generalization and data splitting Building a Logistic Regression Model Using Scikit-Learn Logistic Regression Training and Evaluating a Model in Scikit-Learn Classification Evaluation Metrics Serving Predictions with a Trained Model in Scikit-Learn Pipelines in Scikit-Learn: An Introduction Building a Neural Network Using Keras Introduction to Keras Training a Neural Network Classifier Using Keras Building Custom ML Models on Vertex AI Summary 8. Improving Custom Model Performance The Business Use Case: Used Car Auction Prices Model Improvement in Scikit-Learn Loading the Notebook with the Preexisting Model Loading the Datasets and the Training-Validation-Test Data Split Exploring the Scikit-Learn Linear Regression Model Feature Engineering and Improving the Preprocessing Pipeline Looking for easy improvements Feature crosses Hyperparameter Tuning Hyperparameter tuning strategies Hyperparameter tuning in scikit-learn Model Improvement in Keras Introduction to Preprocessing Layers in Keras Creating the Dataset and Preprocessing Layers for Your Model Building a Neural Network Model Hyperparameter Tuning in Keras Hyperparameter Tuning in BigQuery ML Loading and Transforming Car Auction Data Training a Linear Regression Model and Using the TRANSFORM Clause Configure a Hyperparameter Tuning Job in BigQuery ML Regularization Using hyperparameter tuning in the CREATE MODEL statement Options for Hyperparameter Tuning Large Models Vertex AI Training and Tuning Automatic Model Tuning with Amazon SageMaker Azure Machine Learning Summary 9. Next Steps in Your AI Journey Going Deeper into Data Science Working with Unstructured Data Working with image data Working with text data Generative AI Explainable AI ML Operations Continuous Training and Evaluation Summary Index