دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: منطق ویرایش: 2nd rev. نویسندگان: Rob. Nederpelt, Fairouz. Kamareddine سری: Texts in computing ISBN (شابک) : 9780954300678, 095430067X ناشر: King's College Publications سال نشر: 2011 تعداد صفحات: 349 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Logical reasoning : a first course به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب استدلال منطقی: اولین دوره نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
LogicalReasoning_1 1 • What is \'logic\'? 1.1 - Aristotle 1.2 - Formal Logic 1.3 - Exercises 2 • Abstract Propositions 2.1 - Propositions 2.2 - Abstract propositions and connectives 2.3 - Recursive definition of propositions 2.4 - The structure of abstract propositions 2.5 - Dropping parentheses 2.6 - Exercises 3 • Truth Tables 3.1 - The conjunction 3.2 - The disjunction 3.3 - The negation 3.4 - The implication 3.5 - The bi-implication 3.6 - Other notations 3.7 - Exercises 4 • The Boolean behaviour of propositions 4.1 - Truth functions 4.2 - Classes of equivalent propositions 4.3 - Equivalency of propositions 4.4 - Tautologies and Contradictions 4.5 - Exercises 5 • Standard Equivalence 5.1 - Commutativity, Associativity 5.2 - Intermezzo: ⇒ and ⇔ as meta-symbols 5.3 - Idempotence, Double negation 5.4 - Rules with True and False 5.5 - Distributivity, De Morgan 5.6 - Rules with ⇒ 5.7 - Rules with ⇔ 5.8 - Exercises 6 • Working with equivalent propositions 6.1 - Basic properties of Equivalence 6.2 - Substitution, Leibniz 6.3 - Calculations with Equivalence 6.4 - Equivalence in Mathematics 6.5 - Exercises 7 • Strengthening and weakening propositions 7.1 - Stronger and Weaker 7.2 - Standard weakenings 7.3 - Basic properties of \'stronger\' 7.4 - Calculations with weakening 7.5 - Exercises 8 • Predicates and Quantifiers 8.1 - Sorts of variables 8.2 - Predicates 8.3 - Quantifiers 8.4 - Quantifying many-place predicates 8.5 - The structure of quantified formulas 8.6 - Exercises 9 • Standard equivalence with Quantifiers 9.1 - Equivalence of predicates 9.2 - The renaming of bound variables 9.3 - Domain splitting 9.4 - One or zero element domains 9.5 - Domain weakening 9.6 - De Morgan for ∀ and ∃ 9.7 - Substitution and Leibniz for quantifications 9.8 - Other equivalences with ∀ and ∃ 9.9 - Tautologies and Contradictions with quantifiers 9.10 - Exercises 10 • Other binders of Variables 10.1 - Predicates vs. Abstract function values 10.2 - The set binder 10.3 - The sum binder 10.4 - The symbol # 10.5 - Scopes of binders 10.6 - Exercises LogicalReasoning_2 11 • Reasoning 11.1 - The strength and weakness of calculations 11.2 - \'Calculating\' against \'Reasoning\' 11.3 - An example from mathematics 11.4 - Inference 11.5 - Hypotheses 11.6 - The use of hypotheses 11.7 - Exercises 12 • Reasoning with ∧ and ⇒ 12.1 - Flags 12.2 - Introduction and Elimination Rules 12.3 - The construction of an abstract reasoning 12.4 - The setting up of a reasoning 12.5 - Exercises 13 • The structure of the context 13.1 - Validity 13.2 - Nested contexts 13.3 - Other notations 13.4 - Exercises 14 • Reasoning with other connectives 14.1 - Reasoning with ¬ 14.2 - An example with ⇒ and ¬ 14.3 - Reasoning with False 14.4 - Reasoning with ¬¬ 14.5 - Reasoning by contradiction 14.6 - Reasoning with ∨ 14.7 - A more difficult example 14.8 - Case distinction 14.9 - Reasoning with ⇔ 14.10 - Exercises 15 • Reasoning with quantifiers 15.1 - Reasoning with ∀ 15.2 - An example with ∀-intro and ∀-elim 15.3 - Reasoning with ∃ 15.4 - Alternatives for ∃ 15.5 - An example concerning the ∃-rules 15.6 - Exercises LogicalReasoning_3 16 • Sets 16.1 - Set construction 16.2 - Universal set and subset 16.3 - Equality of Sets 16.4 - Intersection and Union 16.5 - Complement 16.6 - Difference 16.7 - The empty set 16.8 - Powerset 16.9 - Cartesian Product 16.10 - Exercises 17 • Relations 17.1 - Relations between sets 17.2 - Relations on a set 17.3 - Sepcial relations on a set 17.4 - Equivalence Relations 17.5 - Equivalence classes 17.6 - Composing relations 17.7 - Equality of Relations 17.8 - Exercises 18 • Mappings 18.1 - Mappings from one set to another 18.2 - The characteristics of a mapping 18.3 - Image and source 18.4 - Special mappings 18.5 - The inverse function 18.6 - Composite mappings 18.7 - Equality of mappings 18.8 - Exercises 19 • Numbers and Structures 19.1 - Sorts of numbers 19.2 - The structure of the natural numbers 19.3 - Inductive proofs 19.4 - Inductive definition of sets of numbers 19.5 - Strong induction 19.6 - Inductive definition of sets of formulas 19.7 - Structural induction 19.8 - Cardinality 19.9 - Denumerability 19.10 - Uncountability 19.11 - Exercises 20 • Ordered Sets 20.1 - Quasi-ordering 20.2 - Orderings 20.3 - Linear orderings 20.4 - Lexicographic orderings 20.5 - Hasse diagrams 20.6 - Extreme elements 20.7 - Upper and lower bounds 20.8 - Well-ordering and well-foundedness 20.9 - Exercises