دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Lorne Falkenstein, Scott Stapleford, Molly Kao سری: ISBN (شابک) : 0367460297, 9780367460297 ناشر: Routledge سال نشر: 2021 تعداد صفحات: 576 [667] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 32 Mb
در صورت تبدیل فایل کتاب Logic Works: A Rigorous Introduction to Formal Logic به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آثار منطقی: مقدمه ای دقیق بر منطق رسمی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Logic Works مقدمه ای انتقادی و گسترده برای منطق است. این پرسشها را در مورد اینکه چرا سیستمهای منطق همانطور هستند، چگونه با زبان معمولی و استدلال معمولی مرتبط هستند و چه جایگزینهایی برای آموزههای منطقی کلاسیک وجود دارد، میپرسد. این کتاب منطق کلاسیک و جایگزینهای مرتبه اول، از جمله منطق شهودی، آزاد و با ارزشهای فراوان را پوشش میدهد. همچنین در نظر میگیرد که چگونه میتوان تحلیل منطقی را برای نمایش دقیق استدلال به کار رفته در کار علمی و علمی، درک بهتر آن استدلال و شناسایی مقدمات پنهان آن به کار برد. با هدف اینکه به اندازه یک متن درسی، یک اثر مرجع و کتاب راهنمای برای مطالعه مستقل و بیشتر باشد، مطالب بیشتری را از آنچه در دوره مقدماتی پوشش داده می شود پوشش می دهد. همچنین این مطالب را با طولانیتر و عمیقتر پوشش میدهد تا آنها را برای کسانی که هیچ آموزش قبلی در زمینه منطق یا سیستمهای رسمی ندارند، در دسترس قرار دهد. مواد پشتیبانی آنلاین شامل کتابچه راهنمای راهحلهای دانشآموزی مفصل با تفسیری در حال اجرا در مورد تمام تمرینهای ستارهدار، و مجموعهای از اسلایدهای قابل ویرایش برای مربیان برای سفارشی کردن دورههای خود است. ویژگیهای کلیدی طیف وسیعی از موضوعات را معرفی میکند، به مربیان اجازه میدهد تا دورههایی را برای دستیابی به طیفی از اهداف مختلف بسازند. نگرش انتقادی نسبت به آموزههای کلاسیک خاص اتخاذ میکند، دانشآموزان را در معرض راههای جایگزین برای پاسخگویی به سؤالات فلسفی درباره منطق قرار میدهد. و خود را به رسمیت می بخشد، معناشناسی عینی را برای منطق کمی آسان می کند، با رویکردی افزایشی و مبتنی بر قاعده به کمک تمرین های ساده متعدد، نتایج فرانظری مهم را از طریق ارائه گفتمانی آن نتایج و با استفاده از مطالعات موردی ساده در دسترس دانشجویان مقدماتی قرار می دهد.
Logic Works is a critical and extensive introduction to logic. It asks questions about why systems of logic are as they are, how they relate to ordinary language and ordinary reasoning, and what alternatives there might be to classical logical doctrines. The book covers classical first-order logic and alternatives, including intuitionistic, free, and many-valued logic. It also considers how logical analysis can be applied to carefully represent the reasoning employed in academic and scientific work, better understand that reasoning, and identify its hidden premises. Aiming to be as much a reference work and handbook for further, independent study as a course text, it covers more material than is typically covered in an introductory course. It also covers this material at greater length and in more depth with the purpose of making it accessible to those with no prior training in logic or formal systems. Online support material includes a detailed student solutions manual with a running commentary on all starred exercises, and a set of editable slides for instructors to customize their courses. Key Features Introduces an unusually broad range of topics, allowing instructors to craft courses to meet a range of various objectives Adopts a critical attitude to certain classical doctrines, exposing students to alternative ways to answer philosophical questions about logic Carefully considers the ways natural language both resists and lends itself to formalization Makes objectual semantics for quantified logic easy, with an incremental, rule-governed approach assisted by numerous simple exercises Makes important metatheoretical results accessible to introductory students through a discursive presentation of those results and by using simple case studies
Cover Half Title Endorsement Title Page Copyright Page Table of Contents Preface Instructors’ Preface Acknowledgements Symbol Summary 1 Introduction to the Study of Logic 1.1 Demonstration and Interpretation 1.2 Deductive and Inductive Demonstrations 1.3 The Principle of Noncontradiction 1.4 Abstraction, Variables, and Formalization; Logical and Nonlogical Elements; Formal Contradiction 1.5 A Fundamental Problem 1.6 Chapter Outline Technical Appendix: Elements of a Theory of Demonstrative Logic Notes References Part I Sentential Logic 2 Vocabulary and Syntax 2.1 Introduction 2.2 Conventions 2.3 Syntactic Demonstrations and Trees 2.4 Scope; Main Connective and Immediate Components; Named Forms 2.5 Formal Properties Note 3 Semantics 3.1 Semantics for ⊥ and the Sentence Letters 3.2 Semantics for the Connectives 3.3 Semantics for Compound Sentences 3.3.1 Extensional Meaning 3.3.2 Intensional Meaning 3.4 Intensional Concepts Appendix Expressive Adequacy; Disjunctive Normal Form; The Lean Language Notes 4 Formalization 4.1 Looseness of Fit 4.1.1 Formalization of Sentences as Sentence Letters 4.1.2 Formalization of Connective Expressions 4.2 Conditional Sentences of English 4.3 Necessary Conditions 4.4 Sufficient Conditions 4.5 Necessary and Sufficient Conditions; The Principle of Charity 4.6 Formalizing Necessary and Sufficient Conditions 4.7 Exceptions and Strong Exceptions 4.8 Disjunction 4.9 Negations and Conjunctions 4.10 Punctuation 4.11 Limits of Formalization 4.12 Formalizing Demonstrations Notes References 5 Working With SL Semantics 5.1 Identifying and Verifying Interpretations 5.2 Demonstrating That There Is No Interpretation 5.3 Demonstrating General Principles 5.4 Falsifying General Claims 5.5 Relations Between Intensional Concepts; Models; Entailment; Biconditional Proof Appendix Alternatives to Bivalence Appendix 5.1 Supervaluations Appendix 5.2 Three-Valued Logic Appendix 5.3 Paraconsistent Logic Notes References A-1: Advanced Topics Concerning SL Semantics A-1.1 Mathematical Induction A-1.2 Bivalence A-1.3 Extensionality A-1.4 Compactness Note References 6 Derivations 6.1 DL: A Lean Derivation System 6.2 Strategies for Doing Derivations in DL 6.3 Ds: A Derivation System for SL 6.4 Strategies for Doing Derivations in Ds 6.5 Extensions of Ds; Bracket Free Notation 6.5.1 Systematic Overview; Adequacy of DL 6.5.2 Metatheorems and Derived Rules for Ds 6.5.3 Substitution Principles 6.5.4 Disjunctive Normal Form 6.5.5 Relations Between Intensional Concepts 6.5.6 Bracket Free Notation 6.6 Intuition and “Intuitionism”: Derivation in Intuitionistic Logic Notes References A-2: Advanced Topics Concerning the Soundness and Completeness of Ds A-2.1 Soundness A-2.2 Corollary Results A-2.3 Henkin Completeness A-2.4 Demonstration of the Lindenbaum Lemma A-2.5 Demonstration of Lemma 2 A-2.6 Demonstration of Lemma 3 A-2.7 Corollary Results A-2.8 Post/Hilbert–Ackermann Completeness 7 Reduction Trees 7.1 Method and Strategies 7.2 Using Trees to Determine Derivability 7.2.1 Theorems; Inconsistent and Contingent Sentences 7.2.2 Demonstrations 7.2.3 Interderivability 7.3 Theory and Definitions Appendix Trees for Three-Valued and Paraconsistent Logic Notes References A-3: Advanced Topics Concerning the Soundness and Completeness of Ts A-3.1 Soundness of Ts A-3.2 Completeness of Ts A-3.3 Decidability of Ts A-3.4 Tree Conversion; Completeness and Decidability of Ds Part II Modal Sentential Logic 8 Vocabulary, Syntax, Formalization, and Derivations 8.1 Vocabulary and Syntax 8.2 Formalization 8.3 Derivations Notes 9 Semantics and Trees for Modal and Intuitionistic Sentential Logic 9.1 Semantics for Modal Sentential Logic 9.1.1 Discovering Interpretations 9.1.2 Demonstrating That There Is No Interpretation 9.2 Reduction Trees for Modal Sentential Logic 9.3 Semantics for Intuitionistic Sentential Logic 9.4 Reduction Trees for Intuitionistic Sentential Logic References A-4: Advanced Topics Concerning the “Soundness” and “Completeness” of Dm and Tm A-4.1 “Soundness” of Dm A-4.2 Completeness of Tm A-4.3 Tree Conversions A-4.4 Adequacy of Dm and Tm Notes References Part III Predicate Sentential Logic 10 Vocabulary, Syntax, Formalization, and Derivations 10.1 English Predication 10.2 Simple Terms 10.2.1 Vocabulary and Syntax of Predicate Sentential Logic 10.2.2 Formalization 10.2.3 Derivations 10.3 Complex Terms 10.3.1 Functional Terms 10.3.2 Vocabulary and Syntax of PLf; Formalization 10.3.3 Dpf 10.3.4 Definite Descriptions 10.3.5 Vocabulary and Syntax of PL1; Formalization 11 Semantics and Trees 11.1 Interpretations 11.1.1 Domains 11.1.2 Names 11.1.3 Predicates and Satisfaction 11.1.4 Identity 11.2 Valuation Rules 11.3 Working With the Semantics 11.4 Tp 11.5 Semantics for Functional Terms 11.6 Tpf 11.6.1 Systematic Paths 11.6.2 Decidability 11.7 Semantics for PL1 11.7.1 Variable Assignments 11.7.2 Denotation for Variables 11.7.3 Satisfaction 11.7.4 Denotation for Proper Descriptions 11.7.5 Truth Conditions 11.7.6 Denotation for Improper Descriptions 11.7.7 Free Description Theory Notes References A-5: Advanced Topics for PSL A-5.1 Extensionality and Variance A-5.1.1 Extensionality A-5.1.2 Variance A-5.1.2.1 The Variant Interpretation Principle A-5.1.2.2 The Variant Name Principle A-5.2 Soundness of Dp A-5.3 Completeness of Tp A-5.4 Tree Conversion; Soundness of Tp; Completeness of Dp Note Part IV Quantified Predicate Logic 12 Vocabulary, Syntax, and Formalization 12.1 Informal Vocabulary and Syntax 12.1.1 Symbols for Objects 12.1.2 Symbols for Quantities of Objects 12.1.3 Informal Syntax 12.2 Formal Vocabulary and Syntax 12.3 Formalizing English Sentences in Quantified Predicate Logic 12.3.1 Simply Quantified Sentences; Scope 12.3.2 Multiply Quantified Sentences; Scope Ambiguity 12.3.3 Negations of Quantified Claims; Duality; The Square of Opposition; “Any” 12.3.4 Formalizing Relations Between Predicates 12.3.5 A, E, I, and O Sentences; Existential Import 12.3.6 Predicate Descriptions; Changing Scope 12.3.7 Quantities and Superlatives 12.3.8 Definite Descriptions 12.3.9 Bare Existence; Limits of Formalization Notes References 13 Derivations 13.1 Dq 13.2 Extensions of Dq 13.2.1 Functional Terms 13.2.2 Intuitionistic Logic 13.2.3 Free Logic 13.2.4 Free Description Theory Notes References 14 Trees and Tree Model Semantics for Quantified Predicate Logic 14.1 Rules 14.2 Method 14.3 Tree Model Semantics 14.4 Extensions of Tq 14.4.1 Functional Terms 14.4.2 Semantics and Trees for Intuitionistic Logic 14.4.3 Semantics and Trees for Free Logic 14.4.4 Semantics and Trees for Free Description Theories Notes References 15 Semantics for QPL Without Mixed Multiple Quantification 15.1 Objectual Semantics 15.2 Denotation 15.2.1 Variable Assignments 15.2.2 Names 15.3 Satisfaction 15.3.1 Satisfaction Conditions for Predicate and Identity Formulas 15.3.2 Satisfaction Conditions for ., Zero-Place Predicates, and Connective Compounds 15.3.3 Satisfaction Conditions for Singly Quantified Formulas 15.4 Truth 15.5 Working With the Semantics 15.5.1 Discovering Interpretations 15.5.2 Discovering Contradictions 15.6 Demonstrating General Principles 15.6.1 Extensionality 15.6.2 Variance Notes 16 Semantics for QPL With Mixed Multiple Quantification 16.1 Variants On Variable Assignments; Denotation of Variables 16.2 Satisfaction Conditions for Quantified Formulas 16.3 (P) and (=) Applications 16.4 Truth Conditions for Sentences 16.5 Working With the Semantics 16.5.1 Order of List Items 16.5.2 Embellishing the Variant List 16.5.3 Describing the Model at a More Abstract Level 16.5.4 Avoiding Inversion Appendix Demonstration of the Exclusivity Principle A-6: Advanced Topics for QPL A-6.1 Extensionality and Variance A-6.1.1 Name Extensionality A-6.1.2 Variable Extensionality A-6.1.3 Formula Extensionality A-6.1.4 Variance A-6.2 Soundness of Dq A-6.3 Completeness of Tq A-6.4 Tree Conversion; Soundness of Tq; Completeness of Dq Appendix Quantified Modal Logic A-6.A.1 Objects and Worlds A-6.A.1.1 Counterpart Theory A-6.A.1.2 Haecceity Theory A-6.A.2 Names and Predicates A-6.A.3 Quantifier Domains and the Barcan Formulas A-6.A.4 Derivation and Tree Rules A-6.A.5 Substances Reference 17 Higher-Order Logic 17.1 Vocabulary and Syntax 17.2 Formalization; Definitions of Higher-Order Predicates 17.3 Syntax II: Instances 17.4 Derivations 17.5 Semantics 17.6 Trees and Incompleteness Notes References Main Appendix: Rule Summaries 1 Foundational Definitions 2 Intensional Concepts 3 Formation Rules (Def Sentence) Informal Notational Conventions (Def Instance) 4 Sentential Valuation Rules 5 Formulaic and Free Valuation Rules 6 Derivation Rules 7 Tree Rules Rules for Intuitionistic Sentential Trees Index