دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2021
نویسندگان: Georgios S. Limouris (editor)
سری:
ISBN (شابک) : 9783030707729, 9783030707736
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 265
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 14 مگابایت
در صورت تبدیل فایل کتاب Liver Intra-arterial PRRT with 111In-Octreotide: The Tumoricidal Efficacy of 111In Auger Electron Emission به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب PRRT داخل شریانی کبد با 111In-Octreotide: اثر توموری کش 111 در انتشار الکترون Auger نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به تفصیل یک پروژه بالینی را شرح میدهد که کارایی تومورکشی الکترونهای اوگر و تبدیل داخلی منتشر شده از n.c.a را نشان میدهد. 111در انکولوژی به عنوان یک آرمنتاریوم درمانی برای درمان با رادیونوکلئید گیرنده پپتیدی (PRRT) که تومورهای اندازه کوچک (ø ≤ 20 میلیمتر) و میکرو متاستازها را هدف قرار میدهد و در آن به کار میرود.
این مشتاق است. علاقه به n.c.a. 111In زمانی شروع شد که مشاهده شد که گسیل الکترون اوگر آن میتواند به شدت رادیوتوکسیک باشد، به دلیل LET بالای آن هنگام تجزیه در مجاورت DNA سلولی. اکتروتید آنالوگ سوماتواستاتین، با برچسب [111در دی اتیلن تری آمین پنتااستیک اسید (DTPA0-D-Phe1)] یک عامل تشخیصی شناخته شده برای تصویربرداری از تومورهای غدد درون ریز عصبی (یا غیر عصبی) گیرنده سوماتوستاتین مثبت. این متکی بر اتصال، درونی سازی و نصب با واسطه گیرنده در لیزوزوم های نزدیک هسته است. اگر گیرنده های سوماتوستاتین را بیش از حد بیان کنند، عمدتاً از هیستوتایپ sst2، به صورت موضعی، از طریق شریان تغذیه تومورهای جامد تجویز می شود.
این کتاب نتایج را بین i.v مقایسه می کند. و i.a. اجرا در بیش از 80 بیمار پس از بیش از 800 بار. تزریق در تومورهای عصبی غدد درون ریز، مننژیوما، پاراگانگلیوما و سرطان روده بزرگ در یک موسسه واحد (بیمارستان دانشگاه آرتائیون) و I.a. راه، منجر به "ذوب تومور" می شود، در حالی که سمیت را برای بافت سالم کبد و اندام های حیاتی اطراف تومور (کلیه ها و مغز استخوان) به حداقل می رساند.
این جلد ابزار ارزشمندی برای پزشکان پزشکی هسته ای، رادیولوژیست های مداخله ای و انکولوژیست ها است. برخورد با درمان های رادیوپپتیدی
This book describes in detail a clinical project that reveals the tumoricidal efficacy of Auger and internal conversion electrons, emitted from n.c.a. 111In and implemented in oncology as a treating armamentarium for peptide receptor radionuclide therapy (PRRT), targeting small size (ø ≤ 20 mm) tumors and micro-metastases.
The keen interest in n.c.a. 111In began when it was observed that its Auger electron emission could be highly radiotoxic, due to its high LET when it decayed in the vicinity of cellular DNA. The somatostatin analog octreotide, labeled with [111In-diethylenetriaminepentaacetic acid (DTPA0-D-Phe1)] is an established diagnostic agent for the imaging of somatostatin receptor-positive neuro- (or non-neuro) endocrine tumors. It relies on receptor-mediated binding, internalization and installation in the lysosomes in the proximity of the nucleus; administered in large doses, loco-regionally, via the feeding artery of solid tumors, can be highly radiotoxic if they over-express somatostatin receptors, mainly of the sst2 histotype.
The book compares the results between i.v. and i.a. implementation in more than 80 patients after over 800 i.a. infusions in neuroendocrine tumors, meningiomas, paragangliomas and colorectal carcinomas in a single Institute (Aretaieion University Hospital) and encourages the i.a. way, leading to “tumor melting”, while minimizing the toxicity to healthy peritumoral liver tissue and critical organs (kidneys and bone marrow).
The volume is an invaluable tool for nuclear medicine physicians, interventional radiologists and oncologists dealing with radiopeptide therapies.
Preface Acknowledgments Contents 1: The Efficacy of?Auger and?Internal Conversion Electron Emission of?111In for?Treating Neuroendocrine Tumors 1.1 Introduction 1.2 Hepatic Intra-arterial Radiopeptide Flow Dynamics 1.2.1 Production and?Physical Characteristics of?111In 1.3 Recent Historical Background of?Radioactive Infusions for?Liver Tumors 1.4 Physics of?Radiation Therapy 1.4.1 Radiation Types 1.4.2 Auger Electrons 1.4.3 Radiation Dose 1.5 Radiobiology 1.5.1 Modifiers of?Radiation Response 1.6 The Effects of?Radiation on?the?Liver 1.7 The Rationale for 111In-Octreoscan Therapy 1.7.1 Anatomic Vascular Summary 1.7.2 Preclinical Reports on?Blood Supply in?Tumors 1.8 Human Studies with?111In-Octreoscan 1.9 Commercially Available 111In-Octreoscan for?Human Medical Use References 2: Somatostatin 2.1 Historical Corner 2.2 Somatostatin Receptors-Tissue Expression [4] 2.3 Somatostatin Analogues References 3: Gastro-entero-pancreatic Neuroendocrine Tumors 3.1 Syllabus- Classification-Epidemiology 3.2 Therapeutic Approaches Towards Neuroendocrine Tumors 3.2.1 Interventional Approach 3.2.2 Interferon Alfa (IFN-?) 3.2.3 Systemic Chemotherapy References 4: [111In-DTPA0-D-Phe1]-Octreotide: The Ligand?The Receptor?The Label 4.1 The Somatostatin Peptide Family 4.2 The Somatostatin Receptor Family (SSTRs) 4.2.1 Definitions 4.2.2 Somatostatin Receptors: Biological Function 4.2.3 Somatostatin Receptors: Signal Transduction 4.3 An Overview of?Atomic/Nuclear De-excitation: Internal Conversion and?Auger Electrons 4.4 The In-111 Decay Pathway 4.5 A Brief Reminder of?Indium Chemistry 4.6 The Preparation of?[111In-DTPA0-D-Phe1]-Octreotide 4.6.1 The Kit Components 4.6.2 Synthesis of [DTPA0-D-Phe1]- Octreotide 4.6.3 Labeling of?[DTPA0-D-Phe1]-Octreotide with?111In3+ 4.6.4 Determination of?the?[111In-DTPA0-D-Phe1]-Octreotide Labeling Yield [72] 4.6.4.1 Required Materials 4.6.4.2 Preparation of?the?Sep-Pak? Cartridge 4.6.4.3 Sample Analysis 4.6.4.4 Assay 4.6.4.5 Calculations 4.6.5 Precautions 4.6.5.1 General 4.6.6 Adverse Reactions 4.6.7 Dosage and?Administration 4.7 Clinical Pharmacology of?[111In-DTPA0-D-Phe1]-Octreotide 4.7.1 Pharmacokinetics 4.7.2 Metabolism 4.7.3 Pharmacodynamics 4.8 Concluding Remarks References 5: Regulations and?Requirements of?Scientific Centers Performing Radiopeptide Therapies 5.1 Introduction 5.1.1 Multidisciplinary Approach 5.1.2 Radiopeptide Infusion Team 5.2 Legal Regulations of?Scientific Centers Performing Radiopeptide Therapies 5.2.1 Licensing 5.2.2 Appropriate Facilities and?Equipment 5.3 Quality Control and?Documentation of?Radionuclides Applied 5.3.1 Introduction 5.3.2 Documentation 5.3.2.1 Radionuclide Activity 5.3.2.2 Radiochemical Purity 5.3.2.3 Disposal of?Radioactive Waste 5.4 Release of?the?Patient 5.4.1 Radiation Safety Issues, General Principles 5.4.2 Discharge Limits (ICRP Recommendations) 5.4.2.1 Guidance Based on?Retained Activity 5.4.2.2 Specific Instructions at Releasing the?Radioactive Patient Appendix References 6: Intravenous Radiopeptide Infusions with?High Activity of?111In-Octreotide 6.1 Introduction 6.1.1 Patients 6.1.2 Preliminary Results 6.1.3 Equipment and?Procedure 6.1.4 Intravenous Infusion 6.1.5 Blood Sampling 6.2 111In-Octreotide Treatment Results 6.2.1 Liver Metastatic Load 6.2.2 Follow-Up 6.3 Discussion 6.4 Conclusion References 7: Intra-arterial Radiopeptide Infusions?with High Activity of?111In-Octreotide: From??Aretaieion Protocol? to?the?Temporal Intra-arterial Port Installation 7.1 Introduction 7.2 The Therapeutic Approach of?NENs 7.2.1 NETs? Treatment Background 7.2.2 NETs and?Curative Surgery (In This Volume, Chaps. 18 and?19) 7.2.3 NETs and?Minimally Invasive Modalities 7.2.4 NETs and?Systemic Standard Treatment [32?35] 7.2.5 NETs and?the?Intra-arterial Peptide Receptor Radionuclide Therapy (PRRT) Concept; A?Brief Introduction 7.3 Patients and?Methods 7.3.1 Follow-Up and?In?Vivo Measurements 7.3.1.1 Posttreatment and?Follow-Up Studies 7.4 111In-Octreotide Treatment Evaluation 7.5 Discussion 7.5.1 The ?Gnosti-Thera? Principle [?Gnosti-Thera? vs. ?Thera-Nostics?] 7.5.2 The Intra-arterial Infusion Concept 7.5.3 Co-infusion of?DTPA During Peptide Receptor Radionuclide Therapy with?111In-Octreotide Reduces the?Ionic Indium Contaminants 7.6 Conclusion References 8: Radiopeptide Infusions of?Hepatic Metastases After Temporal Implementation of?an? Intra-arterial Port System 8.1 Introduction 8.2 Installation of?the?Drum-Port System 8.2.1 Technical Details 8.2.2 Advantages of?the?Port System After the?Implemented Catheterization of?the?Hepatic Artery 8.3 Material and?Methods 8.3.1 Selection of?Patients 8.3.2 Methodology 8.3.3 Evaluation/Dosage Protocol 8.3.4 Results 8.4 The Personalized Treatment Concept in?the?Peptide Receptor Radionuclide Therapeutic Schemes 8.5 Therapeutic Evaluation/Discussion 8.6 Conclusion References 9: Non-invasive Radiological Modalities for?the?Evaluation of?Neuroendocrine Liver Tumors 9.1 Introduction 9.2 The Radiological Evaluation of?Patients with?Hepatic Tumors of?Neuroendocrine Character 9.2.1 Computed Tomography 9.2.2 Magnetic Resonance Imaging 9.2.3 Ultrasound 9.2.3.1 Enhancement Results of?111In-Octreotide Therapy After Sonoporation 9.2.4 Angiography 9.3 Summary and?Conclusion 9.4 Perspectives References 10: Angiographic Anatomy on?the?Course of?Liver Intra-arterial Infusion 10.1 Introduction 10.2 Liver Arterial Anatomy 10.2.1 Classical Description and?Anatomical Variations 10.2.2 Terminology 10.2.3 Michels? Classification of?Anatomical Variants 10.2.4 Other Anatomical Variants 10.3 Extrahepatic Vessels Originating from?the?Hepatic Vasculature 10.3.1 Vessels Originating from?the?Common- (CHA) and?Proper Hepatic Artery (PHA) 10.3.1.1 Gastro-Duodenal Artery (GDA) and?Pancreato-Duodenal Arcade (PDA) 10.3.1.2 Peribiliary Plexus Arteries (PPA) 10.3.2 Vessels Originating from?the?LHA 10.3.2.1 Right Gastric Artery (RGA) 10.3.2.2 Falciform Artery (FA) 10.3.2.3 Accessory Left Gastric Artery (aLGA) 10.3.2.4 Accessory Left Phrenic Artery (aLPA) 10.3.3 Vessels Originating from?the?Right Hepatic Artery (RHA) 10.3.3.1 Cystic Artery (CA) 10.4 Hepatic Vessels Originating from?the?Extrahepatic Vasculature References 11: Intra-arterial Radiopeptide Infusions: Identifying Anatomic Variants 11.1 Normal, Variant, and?Parasitized Extrahepatic Arterial Supply to?the?Liver 11.2 Extrahepatic Arterial Anatomy: Identification and?Treatment 11.3 Conclusion References 12: Dosimetry and?Dose Calculation: Its Necessity in?Radiopeptide Therapy 12.1 Introduction 12.2 Liver Tolerance to?Ionizing Radiation 12.2.1 Neuroendocrine Tumor Imaging 12.2.2 Hepatic Cancer, ?Aretaieion? Protocol 12.3 Peptide Receptor Radionuclide Therapy (PRRT) 12.3.1 Radionuclide Selection 12.4 Indium-111 as?a?Therapeutic Isotope 12.4.1 Indium-111 Properties 12.4.2 Production of?Carrier-Free [111In] In+ 12.4.3 111In-DTPA-Phe-Octreotide 12.5 Internal Dosimetry 12.5.1 The Basics of?Internal Dosimetry 12.5.2 Method 1: The?MIRD Formalism and?S Values 12.5.2.1 The Cumulated Activity and?Effective Half Time te 12.5.2.2 The Residence Time ? 12.5.3 Method 2: Dose Voxel Kernel Dosimetry 12.5.3.1 Dose Point Kernels 12.5.3.2 The Voxel S Value Approach 12.5.4 Method 3: Monte Carlo 12.5.5 Strengths and?Limitations of?the?Dosimetry Methods 12.5.6 Problems and?Uncertainties 12.5.7 Internal Dosimetry in?Clinical Practice 12.5.7.1 Dosimetry on?an?Organ Level Planar Scintigraphy: Conjugate View Method 12.5.7.2 Red Marrow Dosimetry 12.6 Indium Dose Calculations 12.6.1 Treatment Protocol 12.6.1.1 Protocol Development 12.6.1.2 Gamma Camera Setup Phantom Preparation Determination of?Effective Attenuation Coefficient ? System Calibration Factor K 12.7 Clinical Results from?Patient Dosimetry 12.7.1 i.a and?i.v. Administration 12.7.2 Image Acquisition 12.7.3 Blood and?Urine Measurements 12.7.4 Absorbed Dose Determination 12.7.4.1 Example of?Dose Calculations 12.7.4.2 Tumor Regression 12.7.4.3 Biochemical Response 12.7.4.4 Retreatment 12.8 Conclusion Appendix References 13: Evaluation and?Assessment of?the?Radio-Peptide Treatment Efficacy 13.1 Introduction/Historical Corner 13.2 Response Assessment 13.2.1 WHO Criteria 13.2.2 RECIST Criteria 13.2.3 MD Anderson Cancer Center Criteria for?Bone Metastases 13.2.4 Choi Criteria for?Gastrointestinal Stromal Tumors (GISTs) 13.2.5 MacDonald and?RANO Criteria for?High-Grade Gliomas 13.2.6 Response Assessment Criteria for?Hepatocellular Carcinoma (HCC): EASL, mRECIST, and?RECICL 13.2.7 PET Response Criteria in?Solid Tumors (PERCIST) 13.2.8 The European Organization for?Research and?Treatment of?Cancer (EORTC) Criteria in?Solid Tumors 13.2.9 The Immune-Related Response Criteria (irRC) [9] 13.3 The Southwest Oncology Group (SWOG) Criteria References 14: 111In-Octreotide Infusions for?the?Treatment of?Bronchopulmonary Neuroendocrine Neoplasms 14.1 Introduction 14.2 111In-Octreotide Treatment Results 14.3 Discussion 14.4 Conclusion References 15: 111In-Octreotide Infusions for?the?Treatment of?Colorectal Carcinoma 15.1 Introduction 15.2 111In-Octreotide Treatment Results 15.3 Discussion 15.4 Conclusion References 16: 111In-Octreotide Infusions for?the?Treatment of?Paraganglioma 16.1 Introduction 16.1.1 Parasympathetic (Head and?Neck) Paragangliomas 16.1.2 Sympathetic Paragangliomas 16.1.3 Treatment Stratification 16.2 111In-Octreotide Treatment Results 16.3 Discussion 16.4 Conclusion References 17: Intra-arterial 111In-Octreotide Infusions for?the?Treatment of?Meningioma 17.1 Introduction 17.2 111In-Octreotide Treatment Results 17.3 Discussion 17.4 Conclusions References 18: Liver Surgery in?Neuroendocrine Tumors 18.1 Introduction 18.2 Neuroendocrine Liver Metastases and?Surgical Intervention 18.3 Exeresis of?Liver Neuroendocrine Metastases as?a?Curative Approach 18.3.1 Ergography on?Curative Liver Excision of?Neuroendocrine Liver Metastases 18.4 Resectability of?Neuroendocrine Liver Metastases 18.5 Width of?Resection Margins in?Neuroendocrine Liver Metastases 18.6 Hepatic Lymphadenectomy in?Neuroendocrine Liver Metastases 18.7 Role of?Prophylactic Cholecystectomy 18.8 Palliative Liver Resection for?NET Liver Metastases 18.8.1 Results of?Palliative Liver Resection for?NET Liver Metastases 18.9 Liver Transplantation for?Neuroendocrine Liver Metastases (NELM) 18.10 Surgery and?Combined Therapies 18.11 Perioperative Care and?Speculations 18.12 Conclusion References 19: Cytoreductive Surgery in?Peritoneal Neuroendocrine Neoplasm Metastases: The?Adjuvant Endoperitoneal PRRT with?111In-Octreotide Perspective 19.1 Introduction 19.2 Metastatic NENs 19.3 Peritoneal Carcinomatosis (PC) Due?to?NENs 19.4 Molecular Mechanism of?Peritoneal Metastases 19.5 Distribution of?Peritoneal Metastases Due?to?NENs 19.6 Diagnostic Procedures for?Peritoneal Carcinomatosis Due?to?NENs 19.7 Classification of?Peritoneal Metastases from?NENs 19.8 Management of?Peritoneal Metastases Due?to?NENs 19.9 Surgery/Surgery Combined Treatments 19.9.1 Surgery for?Peritoneal Dissemination 19.9.2 Cytoreductive Surgery 19.9.3 Cytoreduction vs Debulking 19.9.4 Cytoreduction Combined with?Intraperitoneal Chemotherapy or Peptide Receptor Radionuclide Therapy 19.9.5 Application of?This Combined Treatment in?Peritoneal Metastases Due?to?NENs 19.10 Conclusions and?Perspectives References 20: Yttrium-90 SIRT in?NET 20.1 Introduction 20.2 Patient Selection 20.2.1 Indication 20.2.2 Work-Up 20.2.3 Pre-treatment Angiography and?Imaging 20.3 Treatment 20.3.1 Dose Calculation 20.3.2 Treatment Angiography 20.3.3 Posttreatment Imaging 20.4 Efficacy and?Safety 20.4.1 Clinical Outcome 20.4.2 Future Perspectives References 21: Holmium-166 Radioembolization in?NET Patients 21.1 Introduction 21.2 Clinical Workflow 21.2.1 Pre-treatment Evaluation/Planning 21.2.2 Treatment and?Follow-Up 21.3 Radiation Safety 21.4 Imaging 21.5 166Ho Radioembolization for?Neuroendocrine Tumors 21.5.1 Clinical Case 21.6 Future Perspectives References 22: Complications and?Side Effects on?the?Course of?Liver Radio-Infusions with?111In-Octreotide 22.1 Introduction 22.2 Side Effects 22.2.1 Acute Side Effects 22.2.1.1 Carcinoid Crisis 22.2.2 Chronic Side Effects 22.2.2.1 Renal Toxicity 22.2.2.2 Bone Marrow Toxicity 22.2.2.3 Endocrine Organs 22.3 Radiobiological Properties References 23: Progression-Free Survival and?Response Rate in?Neuroendocrine Liver-Metastasized Patients, Treated with?111In-Octreotide 23.1 Introduction 23.2 Response Rate and?Progression-Free Survival 23.2.1 Response Rate 23.2.2 Progression-Free Survival (PFS) and?Overall Survival?(OS) 23.3 Conclusions References 24: Therapy Response vs. Variability of?Tumor Size, Absorbed Dose, and?Ki-67 Index After 111In-Octreotide Intra-arterial Infusions 24.1 Introduction 24.2 Tumor Size, Absorbed Dose, and?Ki-67 Index 24.2.1 Tumor Size 24.2.2 Absorbed Dose 24.2.3 Ki-67 Proliferation Index References