دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Gupta R.K., Nguyen T.A., Song H., Yasin G. (ed.) سری: ISBN (شابک) : 9780323919340 ناشر: Elsevier Inc. سال نشر: 2022 تعداد صفحات: 706 [708] زبان: english فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 Mb
در صورت تبدیل فایل کتاب Lithium-Sulfur Batteries: Materials, Challengess and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب باتری های لیتیوم-گوگرد: مواد، چالش ها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
باتریهای لیتیوم-گوگرد: مواد، چالشها و کاربردها، مزایای باتریهای لیتیوم-گوگردی مانند ظرفیت تئوری بالا، هزینه کم و پایداری را ارائه میکنند و در عین حال برخی از چالشهای موجود را نیز برطرف میکنند. برخی از چالش ها عبارتند از رسانایی الکتریکی پایین، واکنش احتمالی گوگرد با لیتیوم برای تشکیل نمک لیتیوم محلول، تشکیل دندریمر، تغییرات حجم زیاد مواد کاتد در طی واکنش الکتروشیمیایی، و رفتار شاتل پلی سولفیدهای میانی بسیار محلول در الکترولیت. . این کتاب راهحلهای ممکن برای این مسائل را از طریق معماری جدید، استفاده از مواد کامپوزیت، دوپینگ برای بهبود رسانایی کم و غیره و همچنین تأکید بر مواد جدید، مفاهیم معماری و روشهای بهبود عملکرد باتریهای لیتیوم-گوگرد ارائه میکند.
Lithium-Sulfur Batteries: Materials, Challenges, and Applications presents the advantages of lithium-sulfur batteries, such as high theoretical capacity, low cost, and stability, while also addressing some of the existing challenges. Some of the challenges are low electrical conductivity, the possible reaction of sulfur with lithium to form a soluble lithium salt, the formation of the dendrimer, large volume variation ofcathode materials during the electrochemical reaction, and shuttle behavior of highly soluble intermediate polysulfides in the electrolyte. This book provides some possible solutions to these issues through novel architecture, using composite materials, doping to improve low conductivity, etc., as well as emphasizing novel materials, architectural concepts, and methods to improve the performance of lithium-sulfur batteries.
Front Cover Lithium-Sulfur Batteries Lithium-Sulfur Batteries: Materials, Challenges and Applications Copyright Contents List of contributors 1 - Basic principles 1 - Introduction to electrochemical energy storage technologies 1. Introduction 2. History and recent advances 3. Energy storage mechanisms 4. Conclusion and outlook References 2 - Recent developments in lithium–sulfur batteries 1. Introduction 2. Structure and components of lithium–sulfur battery 3. Mechanism and electrochemical properties of lithium–sulfur battery 4. Polysulfide shuttle effect 5. Recent developments 5.1 Cathodes 5.1.1 Sulfur/carbon-based nanocomposites 5.1.2 Sulfur/polymer-based nanocomposites 5.1.3 Other nanocomposites 5.2 Anodes 5.2.1 Lithium-free anodes 5.2.2 Protection technology 5.2.3 Compound technology 5.3 Electrolytes 5.3.1 Ionic liquids 5.3.2 Polymer electrolytes 5.3.3 Solid-state electrolytes 5.4 Separator 5.5 Binder 6. Comparison with other lithium-ion batteries 7. Applications of lithium–sulfur batteries 8. Conclusion and future perspectives References 3 - Chemistry and operation of lithium–sulfur batteries 1. Introduction 1.1 Background of lithium–sulfur battery 1.2 Organization of the chapter 2. Cell chemistry of lithium–sulfur battery 3. Operation of lithium–sulfur batteries 3.1 Elemental sulfur (S8) 3.2 Short-chain sulfur 3.3 Lithium sulfide 3.4 Catholyte 4. Electrochemical characteristics and challenges of lithium–sulfur batteries 4.1 Insulating nature of sulfur and lithium sulfide 4.2 Shuttle behavior of lithium polysulfides 4.3 Volume change 4.4 Self-discharge 4.5 Lithium anode dendrite 4.6 Solid–electrolyte interface 4.7 Cell polarization 5. Polysulfide formation and conversion 5.1 Reduction of elemental sulfur to lithium polysulfide 5.2 Polysulfide precipitation and dissolution 5.3 Polysulfide formation based on sulfur allotrope 5.4 Role of catalysts 6. Summary and outlook References 4 - High-performance lithium–sulfur batteries: role of nanotechnology and nanoengineering 1. Introduction 2. Working principle of lithium–sulfur batteries 3. Challenges in lithium–sulfur batteries 4. Role of nanotechnology and nanoengineering in lithium–sulfur batteries 5. Conclusion References 5 - Mathematical modeling of lithium–sulfur batteries 1. Introduction 1.1 Background of lithium–sulfur batteries 1.2 Principle of the lithium–sulfur battery 1.3 Modeling method 2. Electrochemical modeling 2.1 Overview 2.2 Porous electrode theory 2.3 Electrochemical model 3. Equivalent circuit modeling 3.1 Rint modeling 3.2 Resistance–capacitance modeling 3.3 Thevenin modeling 3.4 Partnership for a new generation of vehicles modeling 3.5 Improved electrical modeling 4. Parameter identification of equivalent-circuit model 4.1 Overview 4.2 Exponential curve fitting 4.3 Least squares method 4.4 Recursive least squares 4.5 Neural network algorithm 5. Model application 5.1 State-of-charge estimation 5.2 State-of-health estimation 5.3 State-of-power prediction 6. Chapter summary References 6 - Nanocomposites for binder-free Li-S electrodes 1. Introduction 2. Carbon nanotube-based nanocomposites for binder-free electrodes 2.1 Carbon nanotube-based nanocomposites for binder-free sulfur cathodes 2.2 Carbon nanotube-based nanocomposites for binder-free lithium anodes 3. Graphene-based nanocomposites for binder-free electrodes 3.1 Graphene-based nanocomposite for binder-free sulfur cathodes 3.2 Graphene-based nanocomposites for binder-free lithium anodes 4. Carbon nanofiber-based nanocomposites for binder-free electrodes 4.1 Carbon nanofiber-based nanocomposites for binder-free sulfur cathodes 4.2 Carbon nanofiber-based nanocomposites for binder-free lithium anodes 5. Mxene-based nanocomposites for binder-free electrodes 5.1 Mxene-based nanocomposites for binder-free sulfur cathodes 5.2 Mxene-based nanocomposites for binder-free lithium anodes 6. Hybrid nanocomposites for binder-free electrodes 6.1 Hybrid nanocomposites for binder-free sulfur cathodes 6.2 Hybrid nanocomposites for binder-free lithium anodes 7. Summary and outlook References 7 - Separators for lithium–sulfur batteries 1. Introduction 2. Working principles of lithium–sulfur batteries 3. Role of battery components in controlling ultimate performance 4. Separator requirements 4.1 Thickness 4.2 Weight 4.3 Porosity 4.4 Ionic conductivity 4.5 Wettability 4.6 Chemical and electrochemical stability 4.7 Mechanical properties 4.8 Thermal stability 4.9 Dimensional stability 4.10 Penetration resistance 4.11 Shuttle effect deterrence 5. Design strategies for separator engineering 5.1 Microporous separators 5.2 Surface modification 5.3 UV-radiation-induced grafting 5.4 High-energy radiation-induced grafting 5.5 Plasma treatment 5.6 Coating method 5.7 Functionalization 5.8 Decoration 5.9 Nonwoven separators 5.10 Nonwoven composite separators 5.11 Multilayer nonwoven separators 5.12 Ion exchange membrane separator 5.13 Carbon-modified separators 5.14 Polymer-functionalized separators 5.15 Inorganic material–modified separators 5.16 Novel functionalized separators 6. Conclusions and future outlook References 8 - Progress on separators for high-performance lithium–sulfur batteries 1. Introduction 2. Critical benchmarks for lithium–sulfur battery interlayers 3. Recent studies of various interlayers 3.1 Physical barrier for lithium-polysulfide shuttling 3.2 Physical–chemical dual-functional interlayer 3.3 Catalytic interlayer 3.3.1 Introduction to atomic defects 3.3.2 Heterostructure interlayer 3.3.3 Single-atom catalysts in the interlayer 4. Perspectives and outlooks Acknowledgments References 9 - Electrolytes for lithium–sulfur batteries 1. Introduction 1.1 Present challenges in lithium–sulfur batteries 2. Organic liquid electrolytes 2.1 Carbonate-based liquid electrolytes 2.2 Ether-based liquid electrolytes 2.3 Electrolyte additives 3. Ionic liquid electrolytes 4. Polymer electrolytes 4.1 Solid polymer electrolytes 4.2 Gel polymer electrolytes 5. Inorganic ceramic electrolytes 5.1 Perovskite type electrolytes 5.2 NASICON type electrolytes 5.3 Garnet type electrolytes 5.4 Sulfide type electrolytes 5.4.1 Amorphous glass sulfide solid electrolytes 5.4.2 Crystalline glass sulfide solid electrolytes 5.5 Borohydride solid electrolytes 6. Future perspective Acknowledgment References 2 - Nanomaterials and nanostructures for sulfur cathodes 10 - Porous carbon–sulfur composite cathodes 1. Microporous carbon-based cathodes for lithium–sulfur batteries 2. Mesoporous carbon-based cathode for lithium–sulfur batteries 3. Hierarchical carbon-based cathode for lithium–sulfur batteries 3.1 Micro/mesoporous carbon-based cathode 3.2 Micro/meso/macroporous carbon-based cathode 4. Surface functionalized porous carbon for lithium–sulfur battery cathodes 5. Summary and perspective Acknowledgments References 11 - Recent advancements in carbon/sulfur electrode nanocomposites for lithium–sulfur batteries 1. Introduction 2. Preparation of carbon/sulfur nanocomposites 3. Physical and electrochemical performance of carbon/sulfur nanocomposite cathodes 3.1 Sulfur/carbon black composite cathode 3.2 Sulfur/carbon nanofiber composite cathode 3.3 Sulfur/multi-walled carbon nanotube composite cathode 3.4 Sulfur/partially reduced graphene oxide nanocomposite cathode 4. Conclusion Acknowledgments References 12 - Advances in nanomaterials for sulfurized carbon cathodes 1. Introduction 2. Sulfurized carbon basics 3. Elucidated structure and electrochemical profile 4. Recent progress of sulfurized carbon and future trends 4.1 Sulfurized carbon morphology 4.2 Nanocomposites with sulfurized carbon 4.3 Polymer precursor modification 4.4 Sulfurized carbon doping 4.5 Redox mediators 4.6 Liquid electrolytes and sulfurized carbon 4.7 Solid electrolyte and sulfurized carbon 4.8 Other organosulfur cathodes 5. Concluding remarks References 13 - Graphene–sulfur composite cathodes 1. Introduction 2. Challenges limiting the development of lithium–sulfur batteries 3. Graphene-based composites in the lithium–sulfur batteries 3.1 Graphene oxide–sulfur composite cathodes 3.2 Graphene–sulfur composite cathodes 3.3 Graphene–sulfur–carbon composite cathodes 3.4 Graphene–sulfur–polymer composite cathodes 3.5 Graphene–metal sulfide composite cathodes 4. Conclusions 5. Outlook 5.1 Enabling uniform sulfur distribution 5.2 Optimize the preparation method and production cost of graphene 5.3 Improving the volume energy density of composite material 5.4 In-depth study of the mechanism of structural instability 5.5 Scientific design of the composite structure 5.6 Improving electrode mechanical strength References 14 - Graphene–sulfur nanocomposites as cathode materials and separators for lithium–sulfur batteries 1. Introduction 2. Cathode material modifications 2.1 Polymer modifications 2.2 Chemical modifications 2.3 Sulfur-rich polymers 2.4 Other composites 3. Modified separators and functional interlayers 4. Techniques and methods 5. Structural design 5.1 Material structures 5.2 Electrode structures 5.3 Battery structures 6. Challenges and perspective List of abbreviations Acknowledgments References 15 - Graphene–sulfur nanohybrids for cathodes in lithium–sulfur batteries 1. Introduction 2. Graphene–sulfur composites for lithium–sulfur batteries 2.1 Heteroatom-doped graphene/sulfur composites 2.1.1 Nitrogen-doped graphene 2.1.2 Boron-doped graphene 2.2 Sulfur/polymer(polyaniline)/graphene oxide composites 2.3 Graphene/metal oxide-based sulfur composites 2.3.1 Sulfur/silicon dioxide/graphene oxide composite 2.3.2 Sulfur/manganese oxide (MnO2)/graphene oxide composite 3. Conclusion Acknowledgments References 16 - Metal–organic framework based cathode materials in lithium–sulfur batteries 1. Introduction 2. Metal–organic frameworks 2.1 Porous metal–organic framework as a sulfur host 3. Metal–organic frameworks as sulfur hosts 3.1 Materials Institute Lavoisier 3.2 Zeolitic imidazolate framework 3.2.1 Zeolitic imidazolate framework-8 3.2.2 Zeolitic imidazolate framework-67 3.3 NENU-5 3.4 Copper metal–organic framework 3.5 Nickel metal–organic framework 3.6 Iron metal–organic framework 3.7 Molybdenum metal–organic framework 3.8 Samarium metal–organic framework 3.9 Aluminum metal–organic framework 3.10 Cobalt metal–organic framework 4. Conclusion References 17 - MXene-based sulfur composite cathodes 1. MXene/sulfur cathodes in lithium–sulfur batteries 2. MXene-based composite/sulfur cathodes in lithium–sulfur batteries 2.1 MXene–carbon composite/sulfur cathode 2.2 MXene–metal compound composite/sulfur cathode 2.3 MXene–polymer composite/sulfur cathode 3. MXene-derived oxide/sulfur cathodes in lithium–sulfur batteries 4. Heteroatom-doped MXene/sulfur cathodes in lithium–sulfur batteries 5. Novel structured MXene/sulfur cathodes in lithium–sulfur batteries References 18 - Polymeric nanocomposites for lithium–sulfur batteries 1. Introduction 2. Fundamentals of polymers 2.1 Mechanical properties 2.2 Conductive polymers 2.3 Ionically conductive polymers 2.4 Polysulfide-trapping polymers 3. Polymer nanocomposites for sulfur cathodes 3.1 Challenges in sulfur cathodes 3.2 Physical confinement by conductive polymers as sulfur hosts 3.3 Physical confinement by polymer coatings on carbon–sulfur composites 3.4 Chemical confinement using sulfur copolymers 4. Polymer electrolytes 4.1 Solid polymer electrolytes 4.2 Hybrid solid polymer electrolytes 5. Conclusion and outlook References 19 - Design of nanostructured sulfur cathodes for high-performance lithium–sulfur batteries 1. Introduction 2. Redox processes and polysulfide characteristics of lithium–sulfur batteries 3. Design criteria for lithium–sulfur battery cathodes 3.1 Pore structure 3.2 Surface area 3.3 Ionic conductivity 3.4 Electrical conductivity 3.5 Chemical interactions 3.5.1 Polar–polar interactions 3.5.2 Lewis acid–base polysulfide interactions in lithium–sulfur batteries 3.5.3 Catenation interactions 3.5.4 Electrocatalysis 4. Sulfur host materials for lithium–sulfur batteries 4.1 Carbon-based materials 4.2 Metal compound-based sulfur cathodes 4.2.1 Metal oxides 4.2.2 Metal sulfides 4.2.3 Metal nitrides 4.2.4 Metal–organic frameworks 4.3 Polymer-based sulfur cathodes 5. Outlook and conclusion References 20 - Nanostructured additives and binders for sulfur cathodes 1. Introduction 2. Background of nanostructured additives and binders for sulfur cathodes 3. Nanostructured additives for sulfur cathodes 3.1 Adsorption effect 3.2 Mediator effect 3.3 Catalytic effect 3.3.1 Metal-based catalysts 3.3.2 Metal sulfide-based catalysts 3.3.3 Heterostructure catalysts 4. Lithium–sulfur battery binders 4.1 Desirable properties of lithium–sulfur battery binders 4.2 Classification of binders 4.3 Rational design of multifunctional binders 4.3.1 Conventional binders 4.3.2 Linear-type binders 4.3.3 Cross-linking binders 5. Conclusion and outlook References 3 - Lithium metal anodes: materials and technology 21 - Lithium metal anode: an introduction 1. Introduction 2. Metallic lithium anode 3. Past and recent developments 4. Suppression strategies for lithium dendrites 5. Conclusion References 22 - Advanced carbon-based nanostructure frameworks for lithium anodes 1. Introduction 2. Carbon-based interlayers 2.1 Artificial solid–electrolyte interphase layer 2.2 Ionic concentration adjusting layer 3. Carbon-based lithium hosts 3.1 High surface area hosts 3.2 Guided lithium plating hosts 3.3 Carbon-based hosts with lithiophilic materials 4. Summary and outlook Acknowledgments References 23 - Carbon-based anode materials for lithium-ion batteries 1. Introduction 2. Carbon allotropes as anodic material for lithium-ion batteries 2.1 Challenges of anode materials 2.2 Principles of lithium-ion batteries 3. Carbon as anode material for lithium-ion batteries 3.1 Porous carbon materials 3.2 Hierarchical and hybrid carbon materials 3.3 Silicon–carbon hybrid composite anode 3.4 Phosphorus/carbon hybrid composite 4. Carbon nanotube and carbon nanotube-based nanomaterial as anode 4.1 Heteroatom-doped carbon nanotubes as anode material 5. Graphene and graphene-based nanomaterial as anode material 5.1 Graphene material for lithium-ion batteries 5.2 Heteroatom-doped graphene material for lithium battery 5.3 Graphene composite with metal oxide as anode material 6. Conclusions and future directions References 4 - Applications and future perspectives 24 - Lithium–sulfur batteries for marine applications 1. Introduction 1.1 Classification of marine vessels and their required energy densities 1.1.1 Classification of marine vessels 1.1.2 Energy requirements of marine vessels 1.1.3 Recent developments in battery use in marine vessels 2. Types of batteries used in marine systems 2.1 Classification of batteries based on purpose 2.1.1 Marine cranking/starter battery 2.1.2 Marine deep-cycle battery 2.1.3 Marine dual-purpose battery 2.2 Classification of batteries based on technology 2.2.1 Lead–acid batteries 2.2.2 Nickel–cadmium batteries 2.2.3 Nickel–metal hydride batteries 2.2.4 Redox flow batteries 2.2.5 Lithium-ion batteries 3. Lithium–sulfur batteries 3.1 Design and chemistry 3.2 Commercialization of lithium–sulfur batteries 4. Battery management system 4.1 Functions of battery management system 4.1.1 Thermal management 4.1.2 State of charge estimation 4.1.3 State of health estimation 4.1.4 Cell balancing 5. Performance, weight, and cost analyses of various batteries in hybrid and electric marine vessels 6. Conclusion Nomenclature References 25 - Two-dimensional layered materials for flexible electronics and batteries 1. Introduction 1.1 Materials challenges in lithium-ion batteries 1.2 Two-dimensional materials in lithium-ion batteries 1.3 Flexible batteries 2. Overview of two-dimensional layered materials 3. Additive manufacturing of two-dimensional layered materials for flexible electronics 3.1 Overview of solution processing with two-dimensional layered materials and inkjet printing 3.1.1 Fluid viscosity and surface energy 3.1.2 Graphene dispersion 3.2 Flexible electronic devices based on two-dimensional graphene 3.3 Flexible heterostructure graphene and molybdenum disulfide biocompatible photosensing devices 3.3.1 Heterostructure flexible photodetector with graphene and molybdenum disulfide 3.3.2 Strain-dependent photoresponse 3.4 Tungsten disulfide and hexagonal boron nitride in additive manufacturing platforms for device applications 4. Incorporation of solution-processed two-dimensional layered MXenes 5. Summary and conclusions Acknowledgments References 26 - Sustainability of lithium–sulfur batteries 1. Introduction 2. Fundamental aspects of lithium–sulfur battery sustainability 2.1 Cost-effectiveness 2.2 Safety 2.3 Environmental impacts 3. Improving lithium–sulfur battery sustainability 3.1 Cathode materials 3.1.1 Sulfur hosts 3.1.2 Binders 3.2 Separators and electrolytes 3.2.1 Separators 3.2.2 Electrolytes 3.2.3 Lower electrolyte-to-sulfur ratios 3.3 Lithium metal anodes 3.3.1 Lithium metal protection 3.3.2 Limited excess lithium 3.4 Scalable electrode preparations 3.4.1 Cathode preparation 3.4.2 Anode preparation 3.5 Recycling of lithium–sulfur batteries 4. Conclusions References 27 - Recyclability and recycling technologies for lithium–sulfur batteries 1. Introduction 2. Lithium–sulfur battery 2.1 Recyclable materials in spent lithium–sulfur batteries 2.1.1 Cathode materials 2.1.2 Anode 2.1.3 Electrolyte 2.1.4 Other lithium–sulfur battery configurations 3. Recycling technologies 3.1 Available recycling technologies 3.1.1 Physiomechanical battery treatment 3.1.2 Pyrometallurgical methods 3.1.3 Hydrometallurgical methods 3.2 Recycling of spent lithium–sulfur batteries 3.3 Novel technologies 4. Conclusion and future perspective References 28 - Recyclability, circular economy, and environmental aspects of lithium–sulfur batteries 1. Introduction 2. Composition and construction of lithium–sulfur batteries 2.1 Lithium anode 2.2 Cathode materials 2.3 Recent types of electrolytes 2.4 Multifunctional separators and absorbers 3. Battery design and fabrication 4. Recycling lithium–sulfur batteries 5. Greener strategies for processing lithium-bearing e-waste 6. Environmental impact and circular economy in the battery industry 7. Future designs and outlook for natural solutions Acknowledgment References Further reading Index A B C D E F G H I J K L M N O P R S T U V W Y Z Back Cover