دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: انرژی ویرایش: نویسندگان: Ming-Fa Lin, Wen-Dung Hsu, Jow-Lay Huang سری: ISBN (شابک) : 0367686236, 9780367686239 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 309 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 30 مگابایت
در صورت تبدیل فایل کتاب Lithium-Ion Batteries and Solar Cells: Physical, Chemical, and Materials Properties به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب باتری های لیتیوم یونی و سلول های خورشیدی: خصوصیات فیزیکی ، شیمیایی و مواد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
باتریهای لیتیوم یونی و سلولهای خورشیدی: ویژگیهای فیزیکی، شیمیایی و مواد بررسی کاملی از خواص فیزیکی، شیمیایی، و مواد و ویژگیهای خاص لیتیوم ارائه میکند. باتری های یونی و سلول های خورشیدی این شبیهسازیهای نظری و اندازهگیریهای تجربی با وضوح بالا را پوشش میدهد که درک کامل علوم پایه را برای توسعه عملکرد عالی دستگاه ارتقا میدهد.
</ p>
این کتاب برای دانشمندان علم مواد، مهندسان شیمی و مهندسان برق طراحی شده است که باتریها و سلولهای خورشیدی پیشرفتهتر را برای حداکثر کارایی توسعه میدهند.
Lithium-Ion Batteries and Solar Cells: Physical, Chemical, and Materials Properties presents a thorough investigation of diverse physical, chemical, and materials properties and special functionalities of lithium-ion batteries and solar cells. It covers theoretical simulations and high-resolution experimental measurements that promote a full understanding of the basic science to develop excellent device performance.
This book is aimed at materials scientists, chemical engineers, and electrical engineers developing enhanced batteries and solar cells for peak performance.
Cover Half Title Title Page Copyright Page Table of Contents Preface Acknowledgments Editors Contributors Chapter 1 Introduction 1.1 Introduction References Chapter 2 Diverse Phenomena in Stage-n Graphite Alkali-Intercalation Compounds 2.1 Introduction 2.2 Theoretical Calculations 2.3 Unique Stacking Configurations and Intercalant Distributions 2.4 Metallic and Semimetallic Behaviors 2.5 Concluding Remarks References Chapter 3 Effect of Nitrogen Doping on the Li-Storage Capacity of Graphene Nanomaterials: A First-Principles Study 3.1 Introduction 3.2 Computational Details 3.3 Results and Discussion 3.3.1 Formation Energy of N-Doped Defects in Graphene 3.3.2 Single Li-Adsorption on N-Doped Defects in Graphene 3.3.3 Li-Storage Capacity of N-Doped Defective Graphene 3.3.4 Migration Energy Barrier of N-Doped Defects in Graphene 3.4 Conclusion References Chapter 4 Fundamental Properties of Li[sub(+)]-Based Battery Anode: Li[sub(4)]Ti[sub(5)]O[sub(12)] 4.1 Introduction 4.2 Theoretical Simulation Methods 4.3 Rich Geometric Symmetries of 3D Li[sub(4)]Ti[sub(5)]O[sub(12)] Compound 4.4 Rich and Unique Electronic Properties 4.5 Concluding Remarks References Chapter 5 Diversified Properties in 3D Ternary Oxide Compound: Li[sub(2)]SiO[sub(3)] 5.1 Introduction 5.2 Numerical Simulations 5.3 Results and Discussion 5.3.1 Geometric Structures 5.3.2 Rich Electronic Properties 5.3.3 Comparisons, Measurements, and Applications 5.4 Concluding Remarks References Chapter 6 Electrolytes for High-Voltage Lithium-Ion Battery: A New Approach with Machine Learning 6.1 Introduction 6.2 Metrics for Molecular Selection 6.3 Experiments, First-Principles Calculation, and Machine Learning 6.4 Machine Learning Regression Model and Property Predictor 6.5 Property Predictor 6.6 Inverse Design and Deep Generative Machine Learning Model 6.7 Data 6.8 Our Adapted Model and Experience 6.9 Conclusions References Chapter 7 Geometric and Electronic Properties of Li[sup(+)]-Based Battery Cathode: Li[sub(x)]Co/NiO[sub(2)]Compounds 7.1 Introduction 7.2 Delicately Numerical VASP Calculations 7.3 Unusual Crystal Structures of 3D Ternary Li[sub(x)]Co/NiO[sub(2)] Materials 7.4 Rich and Unique Electronic Properties 7.5 Concluding Remarks References Chapter 8 Graphene as an Anode Material in Lithium-Ion Battery 8.1 Introduction 8.2 Synthesis of Graphene 8.3 Basic Characterizations of Graphene 8.3.1 Structure and Microstructure Analysis 8.3.2 Bonding/Binding Energy/Functional Groups and Phonon Modes 8.4 Graphene as Anode in Lithium-Ion Batteries 8.4.1 Graphene 8.4.2 Doped Graphene 8.4.3 Porous Graphene 8.4.4 Chemically Modified Graphene for Fast-Charging Lithium-Ion Battery (LIB) 8.4.5 Discussions 8.5 Conclusions Acknowledgement References Chapter 9 Liquid Plasma: A Synthesis of Carbon/Functionalized Nanocarbon for Battery, Solar Cell, and Capacitor Applications 9.1 Introduction 9.2 Formation of Various Forms of Nanocarbon in the Liquid Plasma Process 9.2.1 Formation of Unconventional Polymers in the Liquid Plasma Process 9.2.2 Direct Functionalization of Graphene in the Liquid Plasma Process 9.3 Applications of Nanocarbons Synthesized from the Liquid Plasma Process 9.3.1 Application Nanocarbon Hybrids/Composites for Fuel Cell Applications 9.3.2 Application Nanocarbon Hybrids/Composites for Specific Capacitance Applications 9.4 Future Prospective Acknowledgment References Chapter 10 Ionic Liquid-Based Electrolytes: Synthesis and Characteristics and Potential Applications in Rechargeable Batteries 10.1 Overview 10.1.1 Definition 10.1.2 Classification 10.2 Some Concepts of IL-Based Electrolytes for Li–Ion/Na–Ion Batteries 10.2.1 Low-Melting Alkaline Salts 10.2.1.1 Low-Melting lithium Salts 10.2.1.2 Mixtures of Alkaline Imide Salts 10.2.2 Alkaline Salts Dissolved in Organic Ionic Liquids 10.2.2.1 Effects of Cation Structure 10.2.2.2 Effects of Anion Structure 10.2.2.3 Effect of Organic Solvent Added to ILs 10.2.3 Solvent-in-Salt Electrolytes 10.2.4 Li[sup(+)]-Conducting Polymer Electrolytes Containing Ionic Liquids 10.3 Synthesis of Ionic Liquids 10.3.1 Typical Ionic Liquid Synthetic Route 10.3.1.1 Synthetic Route 1 (Quaternization) 10.3.1.2 Metathesis Reaction 10.4 Applying ILs for Li–Ion/Na–Ion Batteries References Chapter 11 Imidazolium-Based Ionogels via Facile Photopolymerization as Polymer Electrolytes for Lithium–Ion Batteries 11.1 Introduction 11.2 Experiment 11.2.1 Materials 11.2.2 Synthesis of Prepolymer, 1-Ethyl-3-Vinylimidazolium Bis (Trifluoromethanesulfonylimide) (1E3V-TFSI) 11.2.3 Anion Substitution of IL Additive 11.2.4 Preparation of Electrolytes 11.2.5 Sample Characterization 11.2.6 Ionic Conductivity and Linear Sweep Voltammetry (LSV) of Measurement 11.2.7 Battery Cell Assembly 11.2.8 Charge–Discharge Performance and Cycle Life 11.3 Results and Discussion 11.3.1 Preparation and Characterization 11.3.2 Thermal Properties of Electrolytes 11.3.3 Ionic Conductivity and Electrochemical Windows 11.3.4 Charge–Discharge Capacity and Cyclic Performance 11.4 Conclusion References Chapter 12 Back-Contact Perovskite Solar Cells 12.1 Introduction 12.2 Coplanar Back-Contact Structure 12.3 Non-Coplanar Back-Contact Structure 12.4 Conclusion References Chapter 13 Engineering of Conductive Polymer Using Simple Chemical Treatment in Silicon Nanowire-Based Hybrid Solar Cells 13.1 Introduction 13.2 PEDOT:PSS with Tunable Electrical Conductivity 13.2.1 PEDOT:PSS Fabricated by “Baytron P” Routes 13.2.2 PSS Functions in Commercial PEDOT:PSS Complex 13.2.3 PSS Investigations of Electrical Conductivity in PEDOT:PSS 13.3 Treated PEDOT:PSS for Silicon Nanowires-Based Hybrid Solar Cells 13.4 Conclusion Acknowledgment References Chapter 14 Concluding Remarks References Chapter 15 Open Issues and Potential Applications References Chapter 16 Problems References Index