دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3rd
نویسندگان: W.M. Wonham
سری: Applications of Mathematics
ISBN (شابک) : 0387960716, 9780387960715
ناشر: Springer
سال نشر: 1985
تعداد صفحات: 352
زبان: English
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Linear Multivariable Control: A Geometric Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کنترل چند متغیره خطی: یک رویکرد هندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کنترل چند متغیره خطی برای دانشجویان کارشناسی ارشد متخصص در این زمینه است کنترل، دانشمندان مهندسی درگیر در تحقیقات سیستم های کنترل و توسعه، و ریاضیدانان با برخی قبلی آشنایی با مشکلات کنترلی یک رویکرد واحد ارائه می دهد به سنتز ساختاری سیستم های کنترل چند متغیره که هستند خطی، تغییرناپذیر زمان، و دارای نظم دینامیکی محدود. با تأکید بر رویکرد هندسی به جای محاسباتی، نویسنده روش های بصری و مقرون به صرفه را برای دست زدن توصیف می کند سنتز. سپس این روش ها را برای دو مشکل کنترلی به کار می برد مورد علاقه طولانی مدت: تنظیم و عدم تعامل. روال مثال های عددی در میان تمرین ها در پایان قرار داده شده است از هر فصل هر یک از مشکلات اصلی سنتز درمان شده است از نظر تئوری سپس با یک روش اسکلت تکمیل می شود، و تصاویر عددی محاسبات مورد نیاز.
Linear Multivariable Control is for graduate students specializing in control, engineering scientists engaged in control systems research and development, and mathematicians with some previous acquaintance with control problems. It presents a unified approach to the structural synthesis of multivariable control systems that are linear, time-invariant, and of finite dynamic order. Emphasizing a geometric rather than a computational approach, the author describes intuitive and economical methods for handling synthesis. He then applies these methods to two control problems of long-standing interest: regulation and non interaction. Routine numerical examples are placed among the exercises at the end of each chapter. Each of the major synthesis problems treated theoretically is then complemented by a skeleton procedure for, and numerical illustrations of the required computation.
Content: 0 Mathematical Preliminaries.- 0.1 Notation.- 0.2 Linear Spaces.- 0.3 Subspaces.- 0.4 Maps and Matrices.- 0.5 Factor Spaces.- 0.6 Commutative Diagrams.- 0.7 Invariant Subspaces. Induced Maps.- 0.8 Characteristic Polynomial. Spectrum.- 0.9 Polynomial Rings.- 0.10 Rational Canonical Structure.- 0.11 Jordan Decomposition.- 0.12 Dual Spaces.- 0.13 Tensor Product. The Sylvester Map.- 0.14 Inner Product Spaces.- 0.15 Hermitian and Symmetric Maps.- 0.16 Well-Posedness and Genericity.- 0.17 Linear Systems.- 0.18 Transfer Matrices. Signal Flow Graphs.- 0.19 Rouche\'s Theorem.- 0.20 Exercises.- 0.21 Notes and References.- 1 Introduction to Controllability.- 1.1 Reachability.- 1.2 Controllability.- 1.3 Single-Input Systems.- 1.4 Multi-Input Systems.- 1.5 Controllability is Generic.- 1.6 Exercises.- 1.7 Notes and References.- 2 Controllability, Feedback and Pole Assignment.- 2.1 Controllability and Feedback.- 2.2 Pole Assignment.- 2.3 Incomplete Controllability and Pole Shifting.- 2.4 Stabilizability.- 2.5 Exercises.- 2.6 Notes and References.- 3 Observability and Dynamic Observers.- 3.1 Observability.- 3.2 Unobservable Subspace.- 3.3 Full Order Dynamic Observer.- 3.4 Minimal Order Dynamic Observer.- 3.5 Observers and Pole Shifting.- 3.6 Detectability.- 3.7 Detectors and Pole Shifting.- 3.8 Pole Shifting by Dynamic Compensation.- 3.9 Observer for a Single Linear Functional.- 3.10 Preservation of Observability and Detectability.- 3.11 Exercises.- 3.12 Notes and References.- 4 Disturbance Decoupling and Output Stabilization.- 4.1 Disturbance Decoupling Problem (DDP).- 4.2 (A, B)-Invariant Subspaces.- 4.3 Solution of DDP.- 4.4 Output Stabilization Problem (OSP).- 4.5 Exercises.- 4.6 Notes and References.- 5 Controllability Subspaces.- 5.1 Controllability Subspaces.- 5.2 Spectral Assignability.- 5.3 Controllability Subspace Algorithm.- 5.4 Supremal Controllability Subspace.- 5.5 Transmission Zeros.- 5.6 Disturbance Decoupling with Stability.- 5.7 Controllability Indices.- 5.8 Exercises.- 5.9 Notes and References.- 6 Tracking and Regulation I: Output Regulation.- 6.1 Restricted Regulator Problem (RRP).- 6.2 Solvability of RRP.- 6.3 Example 1 : Solution of RRP.- 6.4 Extended Regulator Problem (ERP).- 6.5 Example 2: Solution of ERP.- 6.6 Concluding Remarks.- 6.7 Exercises.- 6.8 Notes and References.- 7 Tracking and Regulation II: Output Regulation with Internal Stability.- 7.1 Solvability of RPIS: General Considerations.- 7.2 Constructive Solution of RPIS: N= 0.- 7.3 Constructive Solution of RPIS: N Arbitrary.- 7.4 Application: Regulation Against Step Disturbances.- 7.5 Application: Static Decoupling.- 7.6 Example 1 : RPIS Unsolvable.- 7.7 Example 2: Servo-Regulator.- 7.8 Exercises.- 7.9 Notes and References.- 8 Tracking and Regulation III: Structurally Stable Synthesis.- 8.1 Preliminaries.- 8.2 Example 1: Structural Stability.- 8.3 Well-Posedness and Genericity.- 8.4 Well-Posedness and Transmission Zeros.- 8.5 Example 2: RPIS Solvable but Ill-Posed.- 8.6 Structurally Stable Synthesis.- 8.7 Example 3: Well-Posed RPIS: Strong Synthesis.- 8.8 The Internal Model Principle.- 8.9 Exercises.- 8.10 Notes and References.- 9 Noninteraeting Control I: Basic Principles.- 9.1 Decoupling: Systems Formulation.- 9.2 Restricted Decoupling Problem (RDP).- 9.3 Solution of RDP: Outputs Complete.- 9.4 Extended Decoupling Problem (EDP).- 9.5 Solution of EDP.- 9.6 Naive Extension.- 9.7 Example.- 9.8 Partial Decoupling.- 9.9 Exercises.- 9.10 Notes and References.- 10 Noninteraeting Control II: Efficient Compensation.- 10.1 The Radical.- 10.2 Efficient Extension.- 10.3 Efficient Decoupling.- 10.4 Minimal Order Compensation: d(?) = 2.- 10.5 Minimal Order Compensation: d(?) = k.- 10.6 Exercises.- 10.7 Notes and References.- 11 Noninteraeting Control III: Generic Solvability.- 11.1 Generic Solvability of EDP.- 11.2 State Space Extension Bounds.- 11.3 Significance of Generic Solvability.- 11.4 Exercises.- 11.5 Notes and References.- 12 Quadratic Optimization I: Existence and Uniqueness.- 12.1 Quadratic Optimization.- 12.2 Dynamic Programming: Heuristics.- 12.3 Dynamic Programming: Formal Treatment.- 12.4 Matrix Quadratic Equation.- 12.5 Exercises.- 12.6 Notes and References.- 13 Quadratic Optimization II: Dynamic Response.- 13.1 Dynamic Response: Generalities.- 13.2 Example 1 : First-Order System.- 13.3 Example 2: Second-Order System.- 13.4 Hamiltoman Matrix.- 13.5 Asymptotic Root Locus: Single Input System.- 13.6 Asymptotic Root Locus: Multivariable System.- 13.7 Upper and Lower Bounds on P0.- 13.8 Stability Margin. Gain Margin.- 13.9 Return Difference Relations.- 13.10 Applicability of Quadratic Optimization.- 13.11 Exercises.- 13.12 Notes and References.- References.- Relational and Operational Symbols.- Letter Symbols.- Synthesis Problems.