ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Linear Algebra: An Inquiry-Based Approach

دانلود کتاب جبر خطی: رویکردی مبتنی بر تحقیق

Linear Algebra: An Inquiry-Based Approach

مشخصات کتاب

Linear Algebra: An Inquiry-Based Approach

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 2020050821, 9780429284984 
ناشر:  
سال نشر: 2021 
تعداد صفحات: [376] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 7 Mb 

قیمت کتاب (تومان) : 43,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 10


در صورت تبدیل فایل کتاب Linear Algebra: An Inquiry-Based Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب جبر خطی: رویکردی مبتنی بر تحقیق نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Series Page
Title Page
Copyright Page
Dedication
Contents
Introduction and Features
For the Student . . . and Teacher
Prerequisites
Suggested Sequences
1. Tuples and Vectors
	1.1. Tuples
		Activity 1.1: Equality
	1.2. Vectors
		Activity 1.2: Feature Vectors
		Activity 1.3: Vectors
		Activity 1.4: Document Vectors
		Activity 1.5: Vector Addition
		Activity 1.6: Scalar Multiplication
		Activity 1.7: Componentwise Multiplication?
	1.3. Proofs
		Activity 1.8: Evidence Collection
		Activity 1.9: Properties of Vector Arithmetic
		Activity 1.10: More Vector Properties
	1.4. Directed Distances
		Activity 1.11: Directed Distances
		Activity 1.12: More Directed Distances
		Activity 1.13: Vectors in R5000
		Activity 1.14: The Geometry of Vectors
		Activity 1.15: Direction and Magnitude
		Activity 1.16: Vector Arithmetic
		Activity 1.17: Vector Equation of a Line
		Activity 1.18: Vector Equation of a Plane
		Activity 1.19: Hyperspace
	1.5. Magnitude
		Activity 1.20: Length of a Vector
		Activity 1.21: Complex Magnitudes
		Activity 1.22: Scaling Vectors
	1.6. Direction
		Activity 1.23: Direction Angles
		Activity 1.24: More Direction Angles
		Activity 1.25: The Angle Between Vectors
		Activity 1.26: Properties of the Dot Product
		Activity 1.27: The Dot Product, Revisited
		Activity 1.28: The Triangle Inequality, Part One
		Activity 1.29: Cauchy-Bunyakovsky-Schwarz
		Activity 1.30: The Triangle Inequality, Part Two
		Activity 1.31: Cosine Similarity
		Activity 1.32: Search Engines
	1.7. Unit and Orthogonal Vectors
		Activity 1.33: Unit Vectors
		Activity 1.34: More About the Dot Product
		Activity 1.35: Orthogonal Vectors
2. Systems of Linear Equations
	2.1. Standard Form
		Activity 2.1: Standard Form
		Activity 2.2: The Coefficient Matrix
	2.2. Solving Systems
		Activity 2.3: Elementary Row Operations
		Activity 2.4: Row Echelon Form
		Activity 2.5: Row Echelon Form by Fang Cheng Shu
		Activity 2.6: Reduced Row Echelon Form by Fang Cheng Shu
	2.3. Coefficient Matrices
		Activity 2.7: Coefficient Matrices
		Activity 2.8: Homogeneous and Inhomogeneous Systems
	2.4. Free and Basic Variables
		Activity 2.9: Free and Basic Variables
		Activity 2.10: Integer Solutions
		Activity 2.11: Rows of 0s
		Activity 2.12: Rank
	2.5. Computational Considerations
		Activity 2.13: Roundoff Errors
	2.6. Applications of Linear Algebra
		Activity 2.14: Finding Orthogonal Vectors
		Activity 2.15: Bezout’s Algorithm
		Activity 2.16: The Hundred Fowls Problem
		Activity 2.17: Shadows
3. Transformations
	3.1. Geometric Transformations
		Activity 3.1: Geometric Transformations
		Activity 3.2: More Rotations
	3.2. Vector Transformations
		Activity 3.3: Transformations of Vectors
		Activity 3.4: More Vector Transformations
	3.3. The Transformation Matrix
		Activity 3.5: Embeddings
		Activity 3.6: More Shadows
	3.4. Domain, Codomain, and Range
		Activity 3.7: Domain and Codomain
		Activity 3.8: Finding the Range, Part One
		Activity 3.9: Finding the Range, Part Two
	3.5. Discrete Time Models
		Activity 3.10: The Rabbit Problem
		Activity 3.11: Leslie Models
		Activity 3.12: Stochastic Matrices
		Activity 3.13: Steady State Vectors
		Activity 3.14: How to Lose a Billion Dollars
	3.6. Linear Transformations
		Activity 3.15: Functions
		Activity 3.16: Linear Transformations and Matrices
		Activity 3.17: Matrices and Linear Transformations
	3.7. Transformation Arithmetic
		Activity 3.18: The Identity Matrix
		Activity 3.19: Composition of Transformations
		Activity 3.20: Inverse Transformations
		Activity 3.21: Preserving Linearity
	3.8. Cryptography
		Activity 3.22: Transposition Ciphers
		Activity 3.23: The Hill Cipher
		Activity 3.24: More Hills
4. Matrix Algebra
	4.1. Scalar Multiplication
		Activity 4.1: Scalar Multiplication of a Matrix
		Activity 4.2: Equivalent Definitions: Scalar Multiplication
	4.2. Matrix Addition
		Activity 4.3: Addition of Matrices
		Activity 4.4: Equivalent Definitions: Matrix Addition
	4.3. Matrix Multiplication
		Activity 4.5: Product of Matrices
		Activity 4.6: Equivalent Definitions: Matrix Multiplication
		Activity 4.7: The Game of Matrix Products
		Activity 4.8: Powers of a Matrix and Fast Powering
		Activity 4.9: Graphs and Matrices
		Activity 4.10: Properties of Matrix Arithmetic
	4.4. Elementary Matrices
		Activity 4.11: Elementary Matrices
	4.5. More Transformations
		Activity 4.12: Matrix Multiplication and Transformation
		Activity 4.13: Properties of the Transpose
		Activity 4.14: The Transpose of a Product, Part One
		Activity 4.15: More Transposes
		Activity 4.16: Symmetric Matrices
		Activity 4.17: Matrices and Rotations
	4.6. Matrix Inverses
		Activity 4.18: Left Inverses
		Activity 4.19: Right Inverses
		Activity 4.20: Inverse Matrices
		Activity 4.21: Finding the Inverse of a Matrix
		Activity 4.22: Double Wide Matrices
		Activity 4.23: More Inverses
		Activity 4.24: Inverses of Products, Transposes, and Inverses
	4.7. Complex Matrices
		Activity 4.25: Complex Matrices
		Activity 4.26: Hermitian Matrices
5. Vector Spaces
	5.1. Vector Spaces
		Activity 5.1: Only So Many Symbols
		Activity 5.2: Vector Spaces and Subspaces
		Activity 5.3: Vector Spaces and the Range
	5.2. Kernels and Null Spaces
		Activity 5.4: Null Space
		Activity 5.5: Properties of the Nullspace
	5.3. Span
		Activity 5.6: The Ballad of East and West
		Activity 5.7: Coordinates
		Activity 5.8: Column Space
		Activity 5.9: Coordinates
		Activity 5.10: Spanning Set
	5.4. Linear Independence and Dependence
		Activity 5.11: Dependence
		Activity 5.12: Steps Towards Independence
		Activity 5.13: Gaining Independence
		Activity 5.14: Dimension
		Activity 5.15: A Basis Exchange
		Activity 5.16: Transformation Basis
		Activity 5.17: Nothing Counts
	5.5. Change of Basis
		Activity 5.18: Good Basis, Bad Basis
		Activity 5.19: Change of Basis
		Activity 5.20: Rotations in R3
	5.6. Orthogonal Bases
		Activity 5.21: Distance Formulas
		Activity 5.22: Orthogonal Bases
	5.7. Normed Vector Spaces
		Activity 5.23: Another Norm
		Activity 5.24: The Secret Life of Norms
		Activity 5.25: Complex Norms
		Activity 5.26: Even More Norms
	5.8. Inner Product Spaces
		Activity 5.27: Properties of the Inner Product
		Activity 5.28: Inner Products
		Activity 5.29: Complexities of the Dot Product
		Activity 5.30: More Inner Products
		Activity 5.31: Induced Norms
		Activity 5.32: Orthogonal Functions
	5.9. Applications
		Activity 5.33: Dot Products and Frequency Vectors
		Activity 5.34: Color Images
		Activity 5.35: Lattices
		Activity 5.36: More Lattices
		Activity 5.37: Lattice Cryptography
		Activity 5.38: Quasiorthogonal Basis
	5.10. Least Squares
		Activity 5.39: Predictions and Observations
		Activity 5.40: Squared Deviations
		Activity 5.41: Close Approximations
		Activity 5.42: Minimizing
		Activity 5.43: Least Squares
		Activity 5.44: Best Fit Curves
		Activity 5.45: “You Might Also Like . . . ”
6. Determinants
	6.1. Linear Equations
		Activity 6.1: Solving Systems of Equations
	6.2. Transformations
		Activity 6.2: Transformation of Areas
		Activity 6.3: Orientation
		Activity 6.4: More Orientation
	6.3. Inverses
		Activity 6.5: The Inverse of a Matrix
	6.4. The Determinant
		Activity 6.6: Determinants for Nonsquare Matrices?
		Activity 6.7: Algebraic Properties of the Determinant
		Activity 6.8: More Algebraic Properties of the Determinant
		Activity 6.9: Geometry and the Determinant
		Activity 6.10: Switching Rows and Columns
		Activity 6.11: Multilinearity of the Determinant
	6.5. A Formula for the Determinant
		Activity 6.12: Determinant Properties
		Activity 6.13: The Determinant of a Diagonal Matrix
		Activity 6.14: Determinants of Triangular Matrices
		Activity 6.15: Determinant of a 3 3 Matrix
		Activity 6.16: Cofactors
		Activity 6.17: Cofactor Expansion
		Activity 6.18: The Cofactor Checkerboard
	6.6. The Determinant Formula
		Activity 6.19: Finding Determinants
		Activity 6.20: Uniqueness of the Determinant
		Activity 6.21: Finding Determinants: Cross Products
	6.7. More Properties of the Determinant
		Activity 6.22: The Laplace Expansion
		Activity 6.23: Determinant of Triangular Matrices
		Activity 6.24: More Determinants, More Transformations
		Activity 6.25: Determinants of Diagonal and Triangular Matrices
		Activity 6.26: More Elementary Matrices
		Activity 6.27: Determinants and Rank
		Activity 6.28: Determinants and Inverses
		Activity 6.29: The Determinant of a Product
		Activity 6.30: Determinants and Inverses, Continued
	6.8. More Computations of the Determinant
		Activity 6.31: Computing the Determinant, Part One
		Activity 6.32: Finding Determinants by Row Reduction
		Activity 6.33: The LU-Approach to Determinants
	6.9. Use(lesses) of the Determinant
		Activity 6.34: Cramer’s Rule
		Activity 6.35: When to Use Cramer’s Rule
		Activity 6.36: The Inverse of a 2 2 Matrix
		Activity 6.37: The Adjoint Method
		Activity 6.38: When to Use the Adjoint Method
	6.10. Uses of the Determinant
		Activity 6.39: More Transformations
		Activity 6.40: Custom Made Determinants
		Activity 6.41: Bad Basis From Good
		Activity 6.42: Function Spaces
	6.11. Permutations
		Activity 6.43: Permutations of Matrices
		Activity 6.44: Permutations and the Laplace Expansion
		Activity 6.45: Signs of Permutations
		Activity 6.46: Properties of Permutations
		Activity 6.47: The Permutation Definition of the Determinant
7. Eigenvalues and Eigenvectors
	7.1. More Transformations
		Activity 7.1: Scaling
		Activity 7.2: Stretching
	7.2. The Eigenproblem
		Activity 7.3: Eigenvectors
		Activity 7.4: Properties of Eigenvalues and Eigenvectors
		Activity 7.5: Solving the Eigenproblem
		Activity 7.6: Finding Eigenvectors
		Activity 7.7: Independence of Eigenvectors
	7.3. Finding Eigenvalues: Numerical Methods
		Activity 7.8: Finding Eigenvalues Numerically
		Activity 7.9: Numerical Methods: To the Breaking Point
		Activity 7.10: Complex Eigenvalues
	7.4. Eigenvalues and Eigenvectors for a 2 x 2 Matrix
		Activity 7.11: Finding Eigenvectors
	7.5. The Characteristic Equation
		Activity 7.12: The Characteristic Equation
		Activity 7.13: Eigenvalues and the Characteristic Equation
		Activity 7.14: Complex Eigenvalues and Eigenvectors
		Activity 7.15: Hermitian Matrices
		Activity 7.16: Solving Polynomial Equations
	7.6. Stochastic Matrices
		Activity 7.17: Eigenvalues and Stochastic Matrices
	7.7. A Determinant-Free Approach
		Activity 7.18: More Equations for Eigenvalues
		Activity 7.19: Higher Dimensional Matrices
		Activity 7.20: The Minimal Polynomial
		Activity 7.21: Seedling Vectors
	7.8. Generalized Eigenvalues
		Activity 7.22: Defective Matrices
		Activity 7.23: Generalized Eigenvectors
		Activity 7.24: Independence of Generalized Eigenvectors
		Activity 7.25: Finding Generalized Eigenvectors
		Activity 7.26: The Trace
		Activity 7.27: Eigenvalues for n x n matrices
	7.9. Symmetric Matrices
		Activity 7.28: Symmetric Matrices
		Activity 7.29: Eigenvalues of Symmetric Matrices
		Activity 7.30: Eigenvalues of Symmetric Matrices, Continued
		Activity 7.31: Can Symmetric Matrices Be Defective?
		Activity 7.32: Positive Definite Matrices
	7.10. Graphs
		Activity 7.33: More Graphs
		Activity 7.34: Centrality Measures
8. Decomposition
	8.1. LU-Decomposition
		Activity 8.1: Row Reduction, Revisited
		Activity 8.2: More Row Reduction
		Activity 8.3: Required Row Interchanges
	8.2. QR-Decomposition
		Activity 8.4: Decomposition Using Gram-Schmidt
	8.3. Eigendecompositions
		Activity 8.5: Eigendecomposition
		Activity 8.6: Diagonalizable Matrices
		Activity 8.7: Eigendecompositions With Defective Matrices
		Activity 8.8: The Jordan Normal Form
	8.4. Singular Value Decomposition
		Activity 8.9: More Transformations
		Activity 8.10: Stretching and Compressing
		Activity 8.11: Singular Value Decomposition
		Activity 8.12: More Symmetric Matrices
		Activity 8.13: Choices and Ambiguities
		Activity 8.14: Sign Ambiguity
		Activity 8.15: Singular Value Decomposition
		Activity 8.16: Compressing Matrices
9. Extras
	9.1. Properties of Polynomials
		Activity 9.1: Properties of Polynomials
	9.2. Complex Numbers
		Activity 9.2: Complex Numbers
		Activity 9.3: Complex Arithmetic
		Activity 9.4: Conjugates and Polynomials
		Activity 9.5: The Complex Plane
	9.3. Mod-N Arithmetic
		Activity 9.6: Introduction to Mod n Arithmetic
		Activity 9.7: Arithmetic mod N
		Activity 9.8: Multiplication and Powers Mod N
		Activity 9.9: Division mod N
	9.4. Polar Coordinates
		Activity 9.10: Polar Coordinates
Bibliography
Index




نظرات کاربران