دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: Vernon Cooray (editor), Farhad Rachidi, Marcos Rubinstein سری: IET Energy Engineering Series, 127 ISBN (شابک) : 1785615394, 9781785615399 ناشر: The Institution of Engineering and Technology سال نشر: 2023 تعداد صفحات: 665 [666] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 39 Mb
در صورت تبدیل فایل کتاب Lightning Electromagnetics, Volume 2: Return Electrical processes and effects به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رعد و برق الکترومغناطیسی، جلد 2: فرآیندها و اثرات الکتریکی بازگشتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
درک رعد و برق به دلیل افزایش رویدادهای شدید آب و هوایی از اهمیت بالایی برخوردار است. نسخه دوم این اثر کلاسیک با محتوای جدید در مورد تابش EM در طول موج های مختلف به طور کامل به روز و بازنگری شده است. جلد 1 به الکترودینامیک می پردازد، در حالی که جلد 2 به اثرات و مدل سازی می پردازد.
Understanding lightning is of importance due to the increase in extreme weather events. The 2nd edition of this classic work has been thoroughly updated and revised, with new content on EM radiation at various wavelengths. Volume 1 treats electrodynamics, whilst volume 2 addresses effects and modelling.
Cover Contents About the editors Acknowledgements 1 Basic discharge processes in the atmosphere 1.1 Introduction 1.2 Electron avalanche 1.3 Streamer discharges 1.4 Corona discharges 1.5 Thermalization or heating of air by a discharge 1.6 Low-pressure electrical discharges 1.7 Leader discharges 1.8 Some features of mathematical modelling of positive leader discharges 1.9 Leader inception based on thermalization of the discharge channel References 2 Modelling of charging processes in clouds 2.1 Introduction 2.2 Definitions of some model descriptors 2.2.1 Basic terminology 2.2.2 Terms related to microphysics 2.2.3 Categories of electrification mechanisms 2.2.4 Other categorizations of cloud models 2.3 Brief history of electrification modelling 2.4 Parameterization of electrical processes 2.4.1 Calculating the electric field 2.4.2 Charge continuity 2.4.3 The non-inductive graupel–ice collision mechanism 2.4.4 The inductive charging mechanism 2.4.5 Small ion processes 2.5 Lightning parameterizations 2.5.1 Stochastic lightning model 2.5.2 Pseudo-fractal lightning 2.6 Some applications of models 2.6.1 Ion and inductive mechanisms 2.6.2 Non-inductive graupel–ice sensitivity 2.6.3 Charge structure and lightning type 2.6.4 Concluding remarks References 3 Numerical simulations of non-thermal electrical discharges in air 3.1 Introduction 3.2 Outline of electro-physical processes in gaseous medium under electric fields 3.2.1 Generation of charged species in gas 3.2.2 Losses of charged species in gas 3.2.3 Dynamics of densities of charge carriers in discharge plasma 3.2.4 Concepts of electron avalanche and streamer 3.3 Hydrodynamic description of gas discharge plasma 3.4 Solving gas discharge problems 3.4.1 Simulations of corona in air 3.4.2 Computer implementation of corona model 3.4.3 Study case: positive corona between coaxial cylinders 3.4.4 Study case: positive corona in rod-plane electrode system 3.5 Simulations of streamer discharges in air 3.5.1 Study case: positive streamer in a weak homogeneous background field 3.5.2 Study case: negative streamer in weak homogeneous background fields References 4 Attachment of lightning flashes to grounded structures 4.1 Introduction 4.2 Striking distance 4.3 Leader inception models 4.3.1 Critical radius and critical streamer length concepts 4.3.2 Rizk’s generalized leader inception equation 4.3.3 Lalande’s stabilization field equation 4.3.4 Leader inception model of Becerra and Cooray (SLIM) 4.4 Leader progression and attachment models 4.5 The potential of the stepped leader channel and the striking distance 4.5.1 Armstrong and Whitehead 4.5.2 Leader potential extracted from the charge neutralized by the return stroke 4.5.3 Striking distance based on the leader tip potential 4.6 Comparison of EGM against SLIM 4.7 Points where more investigations are needed 4.7.1 Orientation of the stepped leader 4.7.2 The orientation of the connecting leader 4.7.3 The connection between the leader potential and the return stroke current 4.7.4 Inclination of the leader channel 4.7.5 Main assumptions of SLIM 4.8 Concluding remarks References 5 Modeling lightning strikes to tall towers 5.1 Introduction 5.2 Modeling lightning strikes to tall structures 5.2.1 Engineering models 5.2.2 Electromagnetic models 5.2.3 Hybrid electromagnetic model (HEM) 5.3 Electromagnetic field computation 5.3.1 Electromagnetic field expressions for a perfectly conducting ground 5.3.2 Electromagnetic field computation for a finitely conducting ground 5.4 Review of lightning current data and associated electromagnetic fields 5.4.1 Experimental data 5.4.2 Data from short towers 5.4.3 Summary of Berger’s data 5.4.4 Other data obtained using short towers (≤100 m) 5.4.5 Data from tall towers 5.5 Summary References 6 Lightning electromagnetic field calculations in the presence of a conducting ground: the numerical treatment of Sommerfeld’s integrals 6.1 Introduction 6.2 Lightning electromagnetic field calculation in presence of a lossy ground with constant electrical parameters 6.2.1 Over-ground electromagnetic field 6.2.2 Underground electromagnetic field 6.3 Lightning electromagnetic field calculation in presence of a lossy ground with frequency-dependent electrical parameters 6.3.1 The dependence of soil conductivity and permittivity on the frequency 6.3.2 Numerical simulation of over-ground and underground lightning electromagnetic field 6.4 Lightning electromagnetic field calculation in presence of a lossy and horizontally stratified ground 6.4.1 Statement of the problem and derivation of the Green’s functions for the electromagnetic field 6.4.2 Derivation of the lightning electromagnetic field 6.4.3 The reflection coefficient R 6.5 Conclusions References 7 Lightning electromagnetic field propagation: a survey on the available approximate expressions 7.1 Lightning electromagnetic fields over a homogeneous soil 7.1.1 Horizontal electric field – Cooray–Rubinstein (CR) formula 7.1.2 Vertical electric field and azimuthal magnetic field 7.1.3 Lightning electromagnetic fields under the groundCooray formula 7.2 Electromagnetic fields propagation along a horizontally stratified ground 7.2.1 Lightning electromagnetic fields for a two-layer horizontally stratified ground: a simplified formulation 7.2.2 Validation of the simplified formula 7.3 Electromagnetic fields propagation along a vertically stratified ground 7.3.1 Lightning electromagnetic fields for a two-layer vertically stratified ground: a simplified formulation 7.3.2 Validation of the simplified formula 7.4 Summary References 8 Interaction of lightning-generated electromagnetic fields with overhead and underground cables 8.1 Introduction 8.2 Transmission line theory 8.3 Electromagnetic field interaction with overhead lines 8.3.1 Single-wire line above a perfectly conducting ground 8.3.2 Taylor, Satterwhite, and Harrison model 8.3.3 Agrawal, Price, and Gurbaxani model 8.3.4 Rachidi model 8.3.5 Rusck model and its extensions 8.3.6 Inclusion of losses 8.3.7 Multiconductor lines 8.3.8 Coupling to complex networks 8.3.9 Frequency-domain solutions 8.3.10 Time-domain solutions 8.3.11 Analytical solutions 8.3.12 Application to lightning-induced voltages 8.4 Electromagnetic field interaction with buried cables 8.4.1 Field-to-buried cables coupling equations 8.4.2 Frequency-domain solutions 8.4.3 Time-domain solutions 8.4.4 Lightning-induced disturbances in a buried cable 8.5 Conclusions Acknowledgments References 9 Application of scale models to the study of lightning transients in power transmission and distribution systems 9.1 Introduction 9.2 Basis of scale modeling 9.3 Simulation of the electromagnetic environment 9.3.1 Lightning channel 9.3.2 Ground 9.3.3 Overhead lines 9.3.4 Transformers 9.3.5 Surge arresters 9.3.6 Buildings 9.3.7 Transmission line towers 9.4 Evaluation of lightning surges in power lines 9.4.1 Investigations associated with direct strokes 9.4.2 Investigations associated with indirect strokes 9.5 Conclusions Acknowledgments References 10 Lightning interaction with the ionosphere 10.1 Introduction 10.2 The full-wave FDTD model of lightning EMPs interaction with the D-region ionosphere 10.2.1 The parameterization of the lower D-region ionosphere 10.2.2 3D spherical model 10.2.3 2D symmetric polar model 10.3 VLF/LF signal of lightning EM fields propagation through the EIWG 10.3.1 The effect of Earth’s curvature 10.3.2 The effect of the ground conductivity 10.3.3 The effect of different D-region ionospheric profiles 10.4 Application to the propagation of NBEs at different distances in the EIWG 10.5 Application to lightning EM field propagation over a mountainous terrain 10.6 Application to the optical emissions of lightninginduced transient luminous events in the nonlinear D-region ionosphere 10.7 Summary References 11 Lightning effects in the mesosphere 11.1 Introduction 11.2 Sprites 11.2.1 Basic properties and morphology of sprites 11.2.2 Mechanism of the sprite nucleation 11.2.3 Sprite development 11.2.4 Sprite models 11.2.5 Inner structure and color of sprites 11.2.6 ELF/VLF electromagnetic fields produced by sprites 11.2.7 Effects of sprites on the ionosphere 11.3 Blue jet, blue starter, and gigantic jet 11.3.1 Basic properties and morphology of blue and gigantic jets 11.3.2 Development of gigantic jet 11.3.3 Models of gigantic jet 11.4 Elves 11.5 Other transient atmospheric phenomena possibly related to lightning activity 11.5.1 Gnomes and Pixies 11.5.2 Transient atmospheric events 11.5.3 Terrestrial gamma-ray flashes References 12 The effects of lightning on the ionosphere/magnetosphere: whistlers and ionospheric Alfven resonator 12.1 Introduction 12.2 Lightning-induced whistlers in the ionosphere/ magnetosphere 12.2.1 General description of whistlers 12.2.2 Theoretical background of plasma waves 12.2.3 Use of whistlers as a diagnostic tool of the ionosphere/magnetosphere 12.3 Ionospheric Alfve´n resonator (IAR) 12.3.1 Brief history and general introduction of IAR 12.3.2 Ground-based observations of IARs at middle latitude 12.3.3 Generation mechanisms of IAR 12.3.4 Excitation of IAR by nearby thunderstorms 12.4 Summary of lightning effects on the ionosphere/ magnetosphere References 13 On the NOx generation in corona, streamer and low-pressure electrical discharges 13.1 Introduction 13.2 Testing the theory using corona discharges 13.3 NOx generation in electron avalanches and its relationship to energy dissipation 13.4 NOx production in streamer discharges 13.5 Discussion and conclusions References 14 On the NOx production by laboratory electrical discharges and lightning 14.1 Introduction 14.2 NOx production by laboratory sparks 14.2.1 Radius of spark channels 14.2.2 The volume of air heated in a spark channel and its internal energy 14.2.3 NOx production in spark channels 14.2.4 Efficiency of NOx production in sparks with different current wave-shapes 14.2.5 NOx production in sparks as a function of energy 14.3 NOx production in discharges containing long-duration currents 14.4 NOx production in streamer discharges 14.5 NOx production in ground lightning flashes 14.5.1 The model of a ground lightning flash 14.5.2 NOx production in different processes in ground flashes 14.6 NOx production by cloud flashes 14.7 Global production of NOx by lightning flashes 14.8 Conclusions Appendix 1 References 15 Lightning and climate change 15.1 Introduction 15.2 Basics of thunderstorm electrification and lightning 15.3 Thermodynamic control on lightning activity 15.3.1 Temperature 15.3.2 Dew point temperature 15.3.3 Water vapor and the Clausius–Clapeyron relationship 15.3.4 Convective available potential energy and its temperature dependence 15.3.5 Cloud base height and its influence on cloud microphysics 15.3.6 Balance level considerations in deep convection 15.3.7 Baroclinicity 15.4 Global lightning response to temperature on different time scales 15.4.1 Diurnal variation 15.4.2 Semiannual variation 15.4.3 Annual variation 15.4.4 ENSO 15.4.5 Decadal time scale 15.4.6 Multi-decadal time scale 15.4.7 Hiatus in global warming and “warming hole” 15.5 Aerosol influence on moist convection and lightning activity 15.5.1 Basic concepts 15.5.2 Observational support 15.5.3 Lightning response to the COVID-19 pandemic 15.5.4 Work of Wang et al. (2018) on the global aerosollightning relationship 15.6 Lightning as a climate variable 15.7 Lightning activity at high latitude 15.7.1 The Arctic 15.7.2 Alaska 15.8 Winter-type thunderstorms and lightning 15.8.1 Effects of global warming on winter thunderstorms 15.9 Storms at the mesoscale 15.10 Tropical cyclones 15.11 Cloud-to-ocean lightning 15.12 Lightning superbolts and megaflashes 15.13 Nocturnal thunderstorms 15.14 Meteorological control on lightning type 15.15 The global circuits as monitors for destructive lightning and climate change 15.16 Expectations for the future References Index Back Cover