دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Fabrizio Martelli, et al سری: ISBN (شابک) : 9780819476586, 0819476587 ناشر: SPIE Press سال نشر: 2010 تعداد صفحات: 277 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 مگابایت
در صورت تبدیل فایل کتاب Light propagation through biological tissue and other diffusive media : theory, solutions, and software به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انتشار نور از طریق بافت بیولوژیکی و سایر رسانه های پخش کننده: نظریه ، راه حل ها و نرم افزار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Content: Acknowledgements --
Disclaimer --
List of Acronyms --
List of Symbols --
1. Introduction --
References. I. THEORY. 2. Scattering and absorption properties of diffusive media --
2.1. Approach followed in this book --
2.2. Optical properties of a turbid medium. 2.2.1. Absorption properties
2.2.2. Scattering properties --
2.3. Statistical meaning of the optical properties of a turbid medium --
2.4. Similarity relation and reduced scattering coefficient --
2.5. Examples of diffusive media --
References. 3. The radiative transfer equation and diffusion equation --
3.1. Quantities used to describe radiative transfer --
3.2. The radiative transfer equation --
3.3. The Green\'s function method --
3.4. Properties of the radiative transfer equation. 3.4.1. Scaling properties
3.4.2. Dependence on absorption --
3.5. Diffusion equation. 3.5.1. The diffusion approximation --
3.6. Derivation of the diffusion equation --
3.7. Diffusion coefficient --
3.8. Properties of the diffusion equation. 3.8.1. Scaling properties
3.8.2. Dependence on absorption --
3.9. Boundary conditions. 3.9.1. Boundary conditions at the interface between diffusive and non-scattering media
3.9.2. Boundary conditions at the interface between two diffusive media --
References. II. SOLUTIONS. 4. Solutions of the diffusion equation for homogeneous media --
4.1. Solution of the diffusion equation for an infinite medium --
4.2. Solution of the diffusion equation for the slab geometry --
4.3. Analytical Green\'s functions for transmittance and reflectance --
4.4. Other solutions for the outgoing flux --
4.5. Analytical Green\'s function for the parallelepiped --
4.6. Analytical Green\'s function for the infinite cylinder --
4.7. Analytical Green\'s function for the sphere --
4.8. Angular dependence of radiance outgoing from a diffusive medium --
References. 5. Hybrid solutions of the radiative transfer equation --
5.1. General hybrid approach to the solutions for the slab geometry --
5.2. Analytical solutions of the time-dependent radiative transfer equation for an infinite homogeneous medium. 5.2.1. Almost exact time-resolved Green\'s function of the radiative transfer equation for an infinite medium with isotropic scattering
5.2.2. Heuristic time-resolved Green\'s function of the radiative transfer equation for an infinite medium with non-isotropic scattering
5.2.3. Time-resolved Green\'s function of the telegrapher equation for an infinite medium --
5.3. Comparison of the hybrid models based on the radiative transfer equation and telegrapher equation with the solution of the diffusion equation --
References. 6. The diffusion equation for layered media --
6.1. Photon migration through layered media --
6.2. Initial and boundary value problems for parabolic equations --
6.3. Solution of the DE for a two-layer cylinder --
6.4. Examples of reflectance and transmittance of a layered medium --
6.5. General property of light re-emitted by a diffusive medium. 6.5.1. Mean time of flight in a generic layer of a homogeneous Cylinder
6.5.2. Mean time of flight in a two-layer cylinder
6.5.3. Penetration depth in a homogeneous medium
6.5.4. Conclusion --
References. 7. Solutions of the diffusion equation with perturbation theory --
7.1. Perturbation theory in a diffusive medium and the born approximation --
7.2. Perturbation theory: solutions for the infinite medium. 7.2.1. Examples of perturbation for the infinite medium --
7.3. Perturbation theory: solutions for the slab. 7.3.1. Examples of perturbation for the slab --
7.4. Perturbation approach for hybrid models --
7.5. Perturbation approach for the layered slab and for other geometries --
7.6. Absorption perturbation by use of the internal pathlength moments --
References. III. SOFTWARE AND ACCURACY OF SOLUTIONS. 8. Software --
8.1. Introduction --
8.2. The diffusion & perturbation program --
8.3. Source code: solutions of the diffusion equation and hybrid models. 8.3.1. Solutions of the diffusion equation for homogeneous media
8.3.2. Solutions of the diffusion equation for layered media
8.3.3. Hybrid models for the homogeneous infinite medium
8.3.4. Hybrid models for the homogeneous slab
8.3.5. Hybrid models for the homogeneous parallelepiped
8.3.6. General purpose subroutines and functions --
References. 9. Reference Monte Carlo results --
9.1. Introduction --
9.2. Rules to simulate the trajectories and general remarks --
9.3. Monte Carlo program for the infinite homogeneous medium --
9.4. Monte Carlo programs for the homogeneous and the layered slab --
9.5. Monte Carlo code for the slab containing an inhomogeneity --
9.6. Description of the Monte Carlo results reported in the CD-ROM. 9.6.1. Homogeneous infinite medium
9.6.2. Homogeneous slab
9.6.3. Layered slab
9.6.4. Perturbation due to inhomogeneities inside the homogeneous slab --
References. 10. Comparisons of analytical solutions with Monte Carlo results --
10.1. Introduction --
10.2. Comparisons between Monte Carlo and the diffusion equation: homogeneous medium. 10.2.1. Infinite homogeneous medium
10.2.2. Homogeneous slab --
10.3. Comparison between Monte Carlo and the diffusion equation: homogeneous slab with an internal inhomogeneity --
10.4. Comparisons between Monte Carlo and the diffusion equation: layered slab --
10.5. Comparisons between Monte Carlo and hybrid models. 10.5.1. Infinite homogeneous medium
10.5.2. Slab geometry --
10.6. Outgoing flux: comparison between Fick and extrapolated boundary partial current approaches --
10.7. Conclusions. 10.7.1. Infinite medium
10.7.2. Homogeneous slab
10.7.3. Layered slab
10.7.4. Slab with inhomogeneities inside
10.7.5. Diffusive media --
References. Appendix A: The first simplifying assumption of the diffusion approximation --
Appendix B: Fick\'s law --
Appendix C: Boundary conditions at the interface between diffusive and non-scattering media --
Appendix D: Boundary conditions at the interface between two diffusive media --
Appendix E: Green\'s function of the diffusion equation in an infinite homogeneous medium --
Appendix F: Temporal integration of the time-dependent Green\'s function --
Appendix G: Eigenfunction expansion --
Appendix H: Green\'s function of the diffusion equation for the homogeneous cube obtained with the Eigenfunction method --
Appendix I: Expression for the normalizing factor --
References --
Index.