ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Lie groups and Lie algebras, part I (chapters 1-3)

دانلود کتاب گروه های دروغ و جبر دروغ ، قسمت اول (فصل 1-3)

Lie groups and Lie algebras, part I (chapters 1-3)

مشخصات کتاب

Lie groups and Lie algebras, part I (chapters 1-3)

دسته بندی: ریاضیات
ویرایش:  
نویسندگان:   
سری: Elements of mathematics 
ISBN (شابک) : 9780201006438, 2705658262 
ناشر: Addison-Wesley, Hermann 
سال نشر: 1975 
تعداد صفحات: 476 
زبان: English 
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 6 مگابایت 

قیمت کتاب (تومان) : 34,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Lie groups and Lie algebras, part I (chapters 1-3) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب گروه های دروغ و جبر دروغ ، قسمت اول (فصل 1-3) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب گروه های دروغ و جبر دروغ ، قسمت اول (فصل 1-3)

این ترجمه انگلیسی 1975 از سه فصل اول Bourbaki’s Groupes et algebres de Lie است. فصل اول تئوری جبرهای دروغ، انحرافات، نمایش‌ها و جبرهای پوششی آن‌ها را شرح می‌دهد. فصل دوم جبرهای دروغ آزاد را به منظور بحث در مورد سری های نمایی، لگاریتمی و هاسدورف معرفی می کند. فصل سوم به نظریه گروه های دروغ بر روی R و C و میدان های اولترا متریک می پردازد.


توضیحاتی درمورد کتاب به خارجی

This is the 1975 English translation of the first three chapters of Bourbaki’s Groupes et algebres de Lie. The first chapter describes the theory of Lie algebras, their deviations, representations, and enveloping algebras. Chapter two introduces free Lie algebras in order to discuss the exponential, logarithmic and the Hausdorff series. Chapter three deals with the theory of Lie groups over R and C, and over ultrametric fields.



فهرست مطالب

CHAPTER I. Lie Algebras  1
 §1. Definition of Lie algebras  1
  1. Algebras  1
  2. Lie algebras  3
  3. Commutative Lie algebras  5
  4. Ideals  5
  5. Derived series, lower central series  6
  6. Upper central series  6
  7. Extensions  7
  8. Semi—direct products  8
  9. Change of base ring  11
 §2. Enveloping algebra of a Lie algebra  12
  1. Definition of the enveloping algebra  12
  2. Enveloping algebra of a product  13
  3. Enveloping algebra of a subalgebra. 14
  4. Enveloping algebra of the opposite algebra. 15
  5. Symmetric algebra of a module. 16
  6. Filtration of the enveloping algebra  17
  7. The Poincaré-Birkhoff-Witt Theorem  18
  8. Extension of derivations  23
  9. Extension of the base ring. 25
 §3. Representations. 25
  1. Representations  25
  2. Tensor product of representations 28
  3. Representations on homomorphism modules 29
  4. Examples 31
  5. Invariant elements 32
  6. Invariant bilinear forms 33
  7. Casimir element 35
  8. Extension of the base ring 36
 §4. Nilpotent Lie algebras 38
  1. Definition of nilpotent Lie algebras 38
  2. Engel’s Theorem 39
  3. The largest nilpotency ideal of a representation 40
  4. The largest nilpotent ideal in a Lie algebra 42
  5. Extension of the base field 42
 §5. Solvable Lie algebras 43
  1. Definition of solvable Lie algebras 43
  2. Radical of a Lie algebra 44
  3. Nilpotent radical of a Lie algebra 44
  4. A criterion for solvability 47
  5. Further properties of the radical 48
  6. Extension of the base field 49
 §6. Semi-simple Lie algebras 50
  1. Definition of semi-simple Lie algebras 5O
  2. Semi-simplicity of representations 51
  3. Semi-simple elements and nilpotent elements in semi-simple Lie algebras  54
  4. Reductive Lie algebras 56
  5. Application: a criterion for semi-simplicity of representations 58
  6. Subalgebras reductive in a Lie algebra  59
  7. Examples of semi—simple Lie algebras 60
  8. The Levi-Malcev Theorem 62
  9. The invariants theorem 66
  10. Change of base field  68
 §7. Ado’s Theorem  68
  1. Coefficients of a representation  69
  2. The extension theorem  69
  3. Ado’s Theorem  71
  Exercises for §1  73
  Exercises for §2  83
  Exercises for §3  85
  Exercises for §4  91
  Exercises for §5  99
  Exercises for §6  102
  Exercises for §7  109
CHAPTER II. FREE LIE ALGEBRAS  111
 §1. Enveloping bigebra of a Lie algebra, 111
  1. Primitive elements of a cogebra 111
  2. Primitive elements of a bigebra 113
  3. Filtered bigebras 114
  4. Enveloping bigebra of a Lie algebra 115
  5. Structure of the cogebra U(g) in characteristic 0 116
  6. Structure of filtered bigebras in characteristic 0 119
 §2. Free Lie algebras, 122
  1. Revision of free algebras 122
  2. Construction of the free Lie algebra 122
  3. Presentation of a Lie algebra 124
  4. Lie polynomials and substitutions 124
  5. Functorial properties 125
  6. Graduations 126
  7. Lower central series 128
  8. Derivations of free Lie algebras 129
  9. Elimination theorem 130
  10. Hall sets in a free magma 132
  11. Hall bases of a free Lie algebra 134
 §3. Enveloping algebra of the free Lie algebra 136
  1. Enveloping algebra of L(X) 136
  2. Projector of A+ (X) onto L(X) 138
  3. Dimension of the homogeneous components of L(X) 140
 §4. Central filtrations 142
  1. Real filtrations 142
  2. Order function 143
  3. Graded algebra associated with a filtered algebra 144
  4. Central filtrations on a group 145
  5. An example of a central filtration 147
  6. Integral central filtrations 148
 §5. Magnus algebras 149
  1. Magnus algebras 149
  2. Magnus group 150
  3. Magnus group and free group 151
  4. Lower central series of a free group 152
  5. p-filtration of free groups 154
 §6. The Hausdorff series 155
  1. Exponential and logarithm in filtered algebras 155
  2. Hausdorff group 157
  3. Lie formal power series 158
  4. The Hausdorff series. 160
  5. Substitutions in the Hausdorff series 171
 §7. Convergence of the Hausdorff series (real or complex case) 164
  1. Continuous-polynomials with values in g 164
  2. Group germ defined by a complete normed Lie algebra 165
  3. Exponential in complete normed associative algebras 169
 §8. Convergence of the Hausdorff series (ultrametric case) 170
  1. p-adic upper bounds of the series exp, log and H 171
  2. Normed Lie algebras 172
  3. Group defined by a complete normed Lie algebra 172
  4. Exponential in complete normed associative algebras 174
  Appendix. Mobius function 176
  Exercises 
CHAPTER III. LIE GROUPS I  209
 §1. Lie groups 209
  1. Definition of a Lie group 209
  2. Morphisms of Lie groups 213
  3. Lie subgroups 214
  4. Semi-direct products of Lie groups 215
  5. Quotient of a manifold by a Lie group 217
  6. Homogeneous spaces and quotient groups 219
  7. Orbits 222
  8. Vector bundles with operators 223
  9. Local definition of a Lie group 226
  10. Group germs 228
  11. Law chunks of operation  231
 §2. Group of tangent vectors to a Lie group  233
  l. Tangent laws of composition  233
  2. Group of tangent vectors to a Lie group  235
  3. Case of group germs  237
 §3. Passage from a Lie group to its Lie algebra  238
  1. Convolution of point distributions on a Lie group  238
  2. Functorial properties  241
  3. Case of a group operating on a manifold  244
  4. Convolution of point distributions and functions 245
  5. Fields of point distributions defined by the action of a group on a manifold  248
  6. Invariant fields of point distributions on a Lie group  249
  7. Lie algebra of a Lie group  251
  8. Functorial properties of the Lie algebra  254
  9. Lie algebra of the group of invertible elements of an algebra  257
  10. Lie algebras of certain linear groups  258
  11. Linear representations  259
  12. Adjoint representation  264
  13. Tensors and invariant forms 268
  14. Maurer—Cartan formulae 269
  15. Construction of invariant difl‘erential forms 271
  16. Haar measure on a Lie group 271
  17. Left differential 274
  18. Lie algebra of a Lie group germ 276
 §4. Passage from Lie algebras to Lie groups 279
  1. Passage from Lie algebra morphisms to Lie group morphisms 279
  2. Passage from Lie algebras to Lie groups 281
  3. Exponential mappings 284
  4. Functoriality of exponential mappings 288
  5. Structure induced on a sub-group  289
  6. Primitives of differential forms with values in a Lie algebra   291
  7. Passage from laws of infinitesimal operation to laws of operation 294
 §5. Formal calculations in Lie groups. 297
  1. The coefficients cum. 297
  2. Bracket in the Lie algebra  298
  3. Powers  300
  4. Exponential. 303
 §6. Real and complex Lie groups. 304
  l. Passage from Lie algebra morphisms to Lie group morphisms  304
  2. Integral subgroups  306
  3. Passage from Lie algebras to Lie groups  310
  4. Exponential mapping. 311
  5. Application to linear representations  215
  6. Normal integral subgroups  316
  7. Primitives of differential forms with values in a Lie algebra  318
  8. Passage from laws of infinitesimal operation to laws of operation  318
  9. Exponential mapping in the linear group.  320
  10. Complexification of a finite-dimensional real Lie group. 322
 §7. Lie groups over an ultrametric field. 326
  1. Passage from Lie algebras to Lie groups  327
  2. Exponential mappings. 328
  3. Standard groups. 328
  4. Filtration of standard groups  330
  5. Powers in standard groups  331
  6. Logarithmic mapping  333
 §8. Lie groups over R or Qp  337
  1. Continuous morphisms  337
  2. Closed subgroups  340
 §9. Commutators, centralizers and normalizers in a Lie group  342
  1. Commutators in a topological group  342
  2. Commutators in a Lie group  343
  3. Centralizers  346
  4. Normalizers  347
  5. Nilpotent Lie groups  347
  6. Solvable Lie groups  352
  7. Radical of a Lie group  354
  8. Semi-simple Lie groups  355
 §10. The automorphism group of a Lie group  359
  1. Infinitesimal automorphisms  359
  2. The automorphism group of a Lie group (real or complex case)  362
  3. The automorphism group of a Lie group (ultrametric case) 367
  Appendix. Operations on linear representations 368
  Exercises 
HISTORICAL NOTE (CHAPTERS I TO III)   410
BIBLIOGRAPHY   431
INDEX OF NOTATION   435
INDEX OF TERMINOLOGY   439
Summary of certain properties of infinite-dimensional Lie algebras over a field of characteristic 0  449




نظرات کاربران