دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Hilgert J., Hofmann K.H., Lawson J.D. سری: ISBN (شابک) : 0198535694 ناشر: OUP سال نشر: 1989 تعداد صفحات: 684 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 مگابایت
در صورت تبدیل فایل کتاب Lie groups, convex cones and semigroups به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب گروه های دروغ، مخروط های محدب و نیمه گروه ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این اولین و تنها مرجع ارائه یک درمان جامع از نظریه دروغ زیر گروه های گروه های دروغ است. این کتاب منحصر به فرد است و به دانش تخصصی کمی نیاز دارد. این شامل اطلاعاتی در مورد نظریه بینهایت کوچک زیرشاخههای Lie و توصیف آن دسته از مخروطها در جبر دروغ است که تحت عمل گروه اتومورفیسمهای درونی تغییر نمیکنند. این بررسی کامل نظریه دروغ محلی را برای نیمه گروه ها ارائه می دهد، و در نهایت، به خواننده گزارش مفیدی از نظریه جهانی برای وجود زیرگروه هایی با مجموعه معینی از مولدهای بی نهایت کوچک ارائه می دهد.
This is the first and only reference to provide a comprehensive treatment of the Lie theory of subsemigroups of Lie groups. The book is uniquely accessible and requires little specialized knowledge. It includes information on the infinitesimal theory of Lie subsemigroups, and a characterization of those cones in a Lie algebra which are invariant under the action of the group of inner automporphisms. It provides full treatment of the local Lie theory for semigroups, and finally, gives the reader a useful account of the global theory for the existence of subsemigroups with a given set of infinitesimal generators.
Cover OXFORD MATHEMATICAL MONOGRAPHS List of Published in this Series Lie Groups, Convex Cones, and Semigroups © Joachim Hilgert, Karl Heinrich Hofmann, and Jimmie D. Lawson, 1989 ISBN 0198535694 QA387. H535 1989 512\' .55 -dc20 LCCN 89-9289 Preface Contents Introduction The logical interdependence Chapter I The geometry of cones 1. Cones and their duality 2. Exposed faces The associated pointed cone Support hyperplanes The algebraic interior Exposed faces of finite dimensional wedges The semiprojective space of a wedge, bases of cones Sums of two wedges The canonical function from C\'(W) to II(E1(W*)) 3. Mazur\'s Density Theorem The Density Theorem The Theorem of Straszsewicz Consequences and Refinements 4. Special finite dimensional cones Polyhedral Wedges Lorentzian Cones Round cones More on quadratic forms and wedges 5. The invariance of cones under flows Subtangent vectors and tangent vectors A Lemma in Calculus I Flows, vector fields The invariance of wedges and vector fields Problems for Chapter I Notes for Chapter I Chapter II Wedges in Lie algebras 1. Lie wedges and invariant wedges in Lie algebras 2. Lie Semialgebras The analytic function g(X) Invariance of vector fields under local translation Definition and characterization of Lie semialgebras Faces of Lie semialgebras Half-space Semialgebras Almost abelian Lie algebras The characteristic function of a Lie algebra Analytic Extension Aspects of Lie Semialgebras 3. Low dimensional and special Lie semialgebras dim L < 3: The solvable case dim L = 3: The semisimple case Examples of Lorentzian cones More on 4-dimensional solvable examples The non-solvable 4-dimensional examples Another special class of solvable Lie algebras 4. Reducing Lie semialgebras, Cartan algebras 5. The base ideal and Lie semialgebras The base ideal Special metabelian Lie algebras Base ideals and Lie semialgebras Nilpotent ideals Base ideals and Cartan algebras Tangent hyperplane subalgebras 6. Lorentzian Lie semialgebras Lie semialgebras in Lie algebras with invariant quadratic form Lorentzian Lie algebras Irreducible Lorentzian Lie algebras Lorentzian Lie semialgebras 7. Lie algebras with Lie semialgebras Invariance Theorems Triviality theorems Lie semialgebras forcing structure theorems Problems for Chapter II Notes for Chapter II Chapter III Invariant cones 1. The automorphism group of a wedge The Lie algebra of the automorphism group of a wedge The special case of a Lie algebra L 2. Compact groups of automorphisms of a wedge Applications to Lie algebras with invariant cones Minimal and maximal invariant cones 3. Frobenius-Perron theory for wedges The case of abelian semigroups 4. The theorems of Kostant and Vinberg Application to Lie algebras with invariant cones 5. The reconstruction of invariant cones The orthogonal projection onto a compactly embedded Cartan algebra Facts on compactly embedded Cartan algebras The trace of an invariant cone on a Cartan algebra Reconstructing cones 6. Cartan algebras and invariant cones Roots and root decompositions The test subalgebras Lie algebras with cone potential Mixed Lie algebras with compactly embedded Cartan algebras Compact and non-compact roots in quasihermitian Lie algebras Constructing invariant cones: Reduction to the reductive case 7. Orbits and orbit projections Orbits generated by root vectors 8. Kostant\'s Convexity Theorem 9. Invariant cones in reductive Lie algebras Decomposing the Lie algebra Invariant cones in hermitian simple Lie algebras Tracing the maximal invariant wedge Maximal real positive roots A suitable Iwasawa decomposition Exploiting sufficient conditions The descent procedure Problems for Chapter III Notes for Chapter III Chapter IV The Local Lie theory of semigroups 1. Local semigroups Germs and local properties The tangent set at 0 The tangent wedge of a local semigroup Further invariance properties of Lie wedges 2. Tangent wedges and local wedge semigroups 3. Locally reachable sets Reachability and attainability Campbell-Hausdorff multiplication versus addition Local one-parameter semigroups of sets 4. Lie\'s Theorem: Pointed cones - split wedges Lie\'s Fundamental Theorem for split Wedges 5. Geometric control in a local Lie group The fundamental differential equation Invariant vector fields 6. Wedge fields 7. The rerouting technique Local rerouting Achieving rerouting 8. The Edge of the Wedge Theorem Problems for Chapter IV Notes for Chapter IV Chapter V Subsemigroups of Lie groups 0. Background on semigroups in groups Preorders on groups and semigroups of positivity Green\'s preorders and relations Subsemigroups of topological groups Closed partial orders and order convexity 1. Infinitesimally generated semigroups Preanalytic semigroups and their tangent objects Ray semigroups and infinitesimally generated semigroups 2. Groups associated with semigroups 3. Homomorphisms and semidirect products 4. Examples Semigroups in abelian Lie groups Semigroups in nilpotent Lie groups Semigroups in solvable non-nilpotent Lie groups Semigroups in semisimple Lie groups Contraction semigroups in Lie groups 5. Maximal Semigroups Algebraic preliminaries Topological generalities Total semigroups Nilpotent groups Frobenius-Perron Groups 6. Divisible Semigroups 7. Congruences on open subsemigroups The Foliation Lemma Consequences of the Foliation Lemma The Foliation Theorem Transporting right congruences Two-sided congruences The stratified domain Problems for Chapter V Notes for Chapter V Chapter VI Positivity 1. Cone fields on homogeneous spaces The homogeneous space G/H Invariant wedge fields on G and G/H W -admissible piecewise differentiable curves 2. Positive forms 1-Forms 3. W-admissible chains revisited 4. Ordered groups and homogeneous spaces Monotone functions and measures 5. Globality and its Applications The Principal Theorem on Globality Closed versus exact forms The tangent bundle of a group Forms as functions Tangent bundles and wedge fields Problems for Chapter VI Notes for Chapter VI Chapter VII Embedding semigroups into Lie groups 1. General embedding machinery Algebraic preliminaries Local embeddings Admissible sets and local semigroups Local homomorphisms Canonical embeddings 2. Differentiable semigroups Admissible sets and strong derivatives Differentiable local semigroups Differentiable local groups Differentiable manifolds with generalized boundary Differentiable semigroups Applications 3. Cancellative semigroups on manifolds Left quotients and partial right translations The double cover and analytic structures Connected semigroup coverings The free group on S Problems for Chapter VII Notes on Chapter VII Appendix 1. The Campbell-Hausdorff formalism 2. Compactly embedded subalgebras Dense analytic subgroups p-compactness Compact and p-compact elements The interior of comp L Compactly embedded Cartan algebras The Weyl group Notes on the Appendix Reference material Bibliography Special symbols Index