دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Michel Serfati
سری: Studia Leibnitiana - Sonderhefte, 53
ISBN (شابک) : 3515120823, 9783515120821
ناشر: Franz Steiner Verlag Wiesbaden GmbH
سال نشر: 2018
تعداد صفحات: 250
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 2 مگابایت
در صورت تبدیل فایل کتاب Leibniz and the Invention of Mathematical Transcendence به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب لایب نیتس و اختراع تعالی ریاضی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اختراع تعالی ریاضی در قرن هفدهم به لایب نیتس مرتبط است، که همیشه ادعا می کرد که آن را ساخته خودش است. با این حال، دکارت یک قاب نمادین کاملاً جدید ایجاد کرده بود که در آن منحنی های صفحه را در نظر می گیریم، که یک تحول واقعی بود. لایب نیتس در ابتدا از این قاب دکارتی قدردانی کرد. اگرچه همانطور که در کتاب می بینیم او در طول تحقیقاتش با زمینه های غیرقابل بیانی مواجه شد که آن را «استعلایی» نامید. توسعه مفهوم تعالی ریاضی هسته اصلی این کتاب است. توصیف با برجسته کردن چگونگی و چرایی جنبههای این مفهوم و موانعی که ریاضیدانان با آن مواجه شدهاند، مسیری عملگرایانه را دنبال میکند. همچنین بن بست هایی وجود داشت که در اینجا شرح داده شده است. لایب نیتس در سطح نمادین (عبارات متعالی)، یک سطح هندسی (منحنی های متعالی) و همچنین یک سطح عددی (اعداد متعالی) که به تفصیل مورد بررسی قرار می گیرند، از ایده های دکارت فراتر رفت.
The invention of mathematical transcendence in the seventeenth century is linked to Leibniz, who always claimed it to be his own creation. However, Descartes had created a completely new symbolic frame in which one considers plane curves, which was a real upheaval. Leibniz initially appreciated this Cartesian frame. Although, as we see in the book, during his research he was confronted with inexpressible contexts he then called 'transcendent'. The development of a concept of mathematical transcendence is at the core of this book. The description follows a pragmatic path by highlighting how and why aspects of the concept were developed and which obstacles were encountered by mathematicians. Also, there were some dead ends which are described here. Leibniz exceeded Descartes' ideas on a symbolical level (transcendent expressions), a geometrical level (transcendent curves) as well as a numerical level (transcendent numbers) those are also examined in detail.
TABLE OF CONTENTS LEIBNIZ AND THE INVENTION OF MATHEMATICAL TRANSCENDENCE. THE ADVENTURES OF AN IMPOSSIBLE INVENTORY THE DISCOVERY OF THE TRANSCENDENCE TRANSCENDENCE AND SYMBOLISM TRANSCENDENCE AND GEOMETRY LOOKING FOR AN INVENTORY SYMBOLICAL INVENTORY? GEOMETRICAL INVENTORY? ON HIERARCHIES IN TRANSCENDENCE. EXPLORATIONS BY REPRODUCTION RECEPTIONS OF THE TRANSCENDENCE FIRST PART. DISCOVERING TRANSCENDENCE CHAPTER I. ON THE GERMINATIONS OF THE CONCEPT OF ‘TRANSCENDENCE’ 1673: “A TRANSCENDENT CURVE SQUARING THE CIRCLE …” 1674: ABOUT ‘SECRET’ GEOMETRY 1675: THE LETTER TO OLDENBURG 1678: THE “PERFECTION OF TRANSCENDENT CALCULUS” CHAPTER II. SQUARING THE CIRCLE II-A THE ARITHMETICAL QUADRATURE OF THE CIRCLE (1673), OR THE VERY FIRST MATHEMATICAL GLORY OF LEIBNIZ The quadrature of the hyperbola in Mercator Quadratrices and symbolic substitutions: the mathematical ideas of Leibniz Leibniz on “the exact proportion …” Some reflections on the integration of rational fractions II-B LEIBNIZ AND THE IMPOSSIBILITY OF THE ANALYTICAL QUADRATURE OF THE CIRCLE OF GREGORY The true quadrature of the circle and hyperbola, by James Gregory The geometric–harmonic mean of Gregory Leibniz and the “convergence” of adjacent sequences (1676) Leibniz’s “means by composition” A mathematical appendix: the geometric-harmonic mean (G-H) CHAPTER III THE POWER OF SYMBOLISM: EXPONENTIALS WITH LETTERS III-A EPISTOLA PRIOR, OR LEIBNIZ’S DISCOVERY OF SYMBOLIC FORMS WITHOUT A SUBSTANCE (JUNE 1676) Fractional exponents Symbolism without interpretation? On the consistency (?) of Newton’s exponential ‘Permanence-Ramification’. A scheme III-B THE EPISTOLA POSTERIOR (OCTOBER 1676) Irrational Exponents Letters in Exponents III-C DESCARTES, LEIBNIZ AND THE IDEALIZED IMAGE OF THE EXPONENTIAL Gradus indefinitus Descartes and Newton transcended by Leibniz CONCLUSION OF THE FIRST PART: THE TRANSCENDENT IDENTIFIED WITH THE NON-CARTESIAN FIELD SECOND PART. THE SEARCH FOR AN INVENTORY CHAPTER IV FROM INFINITELY SMALL ELEMENTS TO THE EXPONENTIAL UTOPIA IV-A TSCHIRNHAUS AND THE INVENTORIES OF 1679–1684 IV-B DE BEAUNE, DESCARTES, LEIBNIZ, AND THE INFINITELY SMALL ELEMENTS When a curve is no longer considered as “a set of points” (in modern terminology) Descartes and De Beaune’s problem Leibniz and De Beaune’s problem IV-C ON EXPONENTIAL SYMBOLISMS IV-C1 ON THE RESOLUTION OF THE EXPONENTIAL EQUATIONS. THE “ADMIRABLE EXAMPLE” The admirable example The impossibility of effective resolutions IV-C2 EXPONENTIAL EXPRESSIONS AND THE DIALECTICS OF INDETERMINACY – THE STATUS OF THE LETTER The symbolism of quantities “arbitrary, but however fixed” When the unknown enters the exponent Towards letteralized exponentials IV-C3 TOWARDS A HIERARCHY IN TRANSCENDENCE: THE INTERSCENDENT EXPONENTIALS When the degree of the exponential “falls between” two integers A hierarchy in transcendence? IV-C4 THE EXPONENTIAL UTOPIA IV-C5 LETTERALIZED EXPONENTIALS ARE SOLUBLE IN THE DIFFERENTIAL CALCULUS An exchange of correspondence with Huygens (1690) The response to Nieuwentijt (1695) CHAPTER V GEOMETRY AND TRANSCENDENCE: THE CURVES V-A THE UNIVERSES OF THE GEOMETRICAL DISCOURSES OF DESCARTES AND LEIBNIZ Descartes and the ‘geometrical’ curves Leibniz and the ‘algebraical’ curves V-B LEIBNIZ’S CRITIQUE OF DESCARTES’ GEOMETRY‘ OF THE STRAIGHT LINE’ AND THE PARAMETERIZED CURVES. Descartes’ practice of the construction of curves, ‘linear, pointwise’ Leibniz and the parameterized curves V-C EVOLUTES, ENVELOPES AND THE GENERATION OF TRANSCENDENT CURVES. The evolute of an algebraical curve is – usually – a transcendent curve Quadratures and evolutes are processes that are at the same time reciprocal and similar ‘On the art of the discovery in general’: Leibniz and the need for reasoned inventories Leibniz and the envelope of a family of curves Variables or constants? Exchanging interpretations V-D TRANSCENDENT CURVES AND ‘POINTWISE’ CONSTRUCTIONS The equilibrium position of an inextensible heavy thread Some elements of hyperbolic trigonometry The catenary “On the curve formed by a thread …”. The geometric-harmonic construction and the letter to Huygens of July 1691 The parameter of the figure is a transcendent quantity The catenary, starting from the logarithmic The logarithmic, starting from the catenary “The construction of Leibniz is the most geometrical possible …” To find points “as much as we want?” Or, “any point?” Among the transcendent curves, the ‘percurrent’ curves are a minima Descartes and the ‘pointwise’ constructions The mathematician as a constructor or as a prescriber? V-E PERCURRENCE AND TRANSCENDENCE, LEIBNIZ AND JOHN BERNOULLI – THE STORY OF A MISUNDERSTANDING The catenary, regarded as an avatar of the strategy of a geometrical inventory Leibniz and Bernoulli – the birth of a misunderstanding Bernoulli and the percurrent calculus A middle way between algebraicity and transcendence? The end of an ambiguity – the ‘hypo-transcendence’ of the exponentials On a possible hierarchy in percurrence V-F MATHEMATICAL COMPLEMENTS – ENVELOPES AND EVOLUTES Determination of the envelope of a family of curves Evolutes and involutes Curves without equations – physical constructions CHAPTER VI QUADRATURES, THE INVERSE METHOD OF TANGENTS, AND TRANSCENDENCE QUADRATURES AS A ‘BLIND’ MODE OF GENERATING TRANSCENDENCE The typology of quadratures in Leibniz The inverse method of tangents Curves subject to a condition and differential equations Arc lengths and rectifications On ‘constants of integration’ CHAPTER VII LEIBNIZ AND TRANSCENDENT NUMBERS A VALUE, WHICH ‘IS NOT A UNIQUE NUMBER’ THE NUMBER IS “HOMOGENEOUS TO THE UNIT” THE TRANSCENDENT NUMBERS IN DE ORTU TRANSCENDENT NUMBERS IN THE NOUVEAUX ESSAIS TRANSCENDENT NUMBERS IN INITIA RERUM MATHEMATICARUM METAPHYSICA DIRECT EXPRESSION OF A NUMBER AND EXPRESSIONS WHICH CONTAIN IT THIRD PART. TOWARDS AN “ANALYSIS OF THE TRANSCENDENT” INTRODUCTION CHAPTER VIII ON HARMONY IN LEIBNIZ VIII-A UNITAS IN VARIETATE Harmony is all the greater as it is revealed in a greater diversity Harmony and the identity of indiscernibles Harmony in the mathematics of Leibniz Symbolism and social communication Harmony via reciprocity, via homogeneity, via symmetry VIII-B THE TWO TRIANGLES AND THE LETTER TO L’HOSPITAL OF DECEMBER 1694 VIII-C PASCAL AND LEIBNIZ. THE FIRST CONSTRUCTION OF THE TRIANGLES (BY ELEMENTS) Construction ‘by elements’ of Pascal’s arithmetical triangle Construction ‘by elements’of Leibniz’s harmonic triangle VIII-D HUYGENS, LEIBNIZ AND THE SUM OF RECIPROCAL TRIANGULAR NUMBERS (FIRST METHOD) The problem of Huygens Leibniz’s first method The sums of reciprocal figurate numbers. Analysis of Leibniz’s first method Harmonic progressions VIII-E) A MATHEMATICAL COMPLEMENT: THE DETERMINATION OF THE ELEMENTS OF THE HARMONIC TRIANGLE CHAPTER IX FROM THE HARMONIC TRIANGLE TO THE CALCULUS OF TRANSCENDENTS IX-A THE SECOND CONSTRUCTION OF THE TRIANGLES (BY LINES) The Leibnizian logical pattern The Leibnizian pattern: presentation and justifications Proofs of these results On convergence. The second method of Leibniz for the reciprocal triangular numbers Higher-order differentials Descartes and Leibniz, numbers versus functions IX-B THE ‘SUM OF ALL THE DIFFERENCES’, FROM LEIBNIZ TO LAMBERT AND LEBESGUE The ‘sum of all the differences’ in a contemporary environment Lambert, continued fractions, and the ‘sum of all the differences’ IX-C ON THE HARMONY OF THE HARMONIC TRIANGLE Leibniz and Mengoli Leibniz and the harmony of the triangle IX-D FROM RECIPROCITY TO THE “NEW CALCULATION OF THE TRANSCENDENTS”. THE “CONSIDERATIONS (…)” OF 1694. THE PATTERN. A new calculation with eight pairwise reciprocal operations From Descartes to Leibniz, the rational functions Leibniz and the partial fraction expansion of the rational fractions Leibniz and the primitives of the rational fractions ‘Ordinary’ Analysis versus ‘New’ Calculation of the Transcendents A truly general calculation Transcendent expressions are exactly those that are impossible to explicate The advent of the transcendence and the detachment from geometry as the only guarantee of the truth Harmony is restored: transcendence is no longer an obstacle to the calculation but an opening towards a new mathematics The Leibnizian scheme: a calculation with reciprocity and iterations IX-E MATHEMATICAL COMPLEMENTS. ON THE PROPERTIES OF THE HARMONIC TRIANGLE CHAPTER X TRANSCENDENCE AND IMMANENCE. SOME TERMINOLOGICAL MARKS BEFORE AND AFTER LEIBNIZ X-A ON NICHOLAS OF CUSA AND ON THE ORIGIN OF THE TERM ‘TRANSCENDENT’ IN LEIBNIZ X-B TRANSCENDENCE AND IMMANENCE. MATHEMATICS AND PHILOSOPHY The use of the word by Leibniz Transcendence: some philosophical definitions On immanence The immanence of the Cartesian algebra, as opposed to the transcendence of the Leibnizian infinitesimal Calculus FOURTH PART. THE RECEPTION OF THE TRANSCENDENCE INTRODUCTION TO THE FOURTH PART CHAPTER XI THE RECEPTION OF THE TRANSCENDENCE BY THE CONTEMPORARIES OF LEIBNIZ XI-A THE RECEPTION BY TSCHIRNHAUS (1678–1682) “Transcendentes, ut vocas …” Tschirnhaus and the tangents to an arbitrary transcendent curve XI-B THE RECEPTION BY CRAIG (1685 AND 1693) John Craig and the impossibility of the quadrature of the transcendent figures XI-C THE RECEPTION BY STURM (1689) John-Christopher Sturm and the ‘transcendent degree’ XI-D L’HOSPITAL, DIFFERENTIAL CALCULUS AND TRANSCENDENT CURVES The ‘Analyse des infiniment petits’ (1696) The organization of the book L’Hôpital and the tangents to the transcendent curves The glory of Leibniz XI-E JOHN BERNOULLI. ABOUT THE ORGANISATION OF THE TRANSCENDENT COMPLEXITY (1695–1730) Bernoulli, Huygens and Leibniz, between hypotranscendence and hypertranscendence Bernoulli and the “degrees of transcendence” On the comparative transcendence orders for the quadratures Only the first order subsists in fine Bernoulli and the repetition of the transcendent creation XI-F ON THE PHILOSOPHY OF SIMPLICITY. DESCARTES VERSUS NEWTON The ‘geometrically irrational’ curves in Newton (1687) From Descartes (1637) to Newton (1707). Symbolical simplicity versus geometrical simplicity CHAPTER XII THE TRANSCENDENCE BONE OF CONTENTION BETWEEN HUYGENS AND LEIBNIZ (1690) XII-A THE CONTROVERSY Leibniz and Huygens The controversy of 1690 between Huygens and Leibniz A lesson on method from Leibniz to Huygens: an equivalence between power series and exponentials Huygens’ conversion THE TRANSCENDENCE, BONE OF CONTENTION BETWEEN HUYGENS AND LEIBNIZ (1690) XII-B A MATHEMATICAL STUDY XII-B1 Huygens’ geometrical problem XII-B2 The Cartesian equation of Huygens’ curve (H) XII-B3 The equation of Huygens’ curve (H) in polar coordinates XII-B4 On calculations of the sub-tangent The “normal vector” method The sub-tangent to Huygens’ cubic curve XII-B5 Leibniz’s ‘supertranscendent’ curve XII-B6 The controversy (fourth and fifth letters) XII-B7 Huygens’ method for the tangents to algebraic curves CHAPTER XIII TRANSCENDENCE: THE WORD AND THE CONCEPTS, FROM EULER AND LAMBERT TO HILBERT XIII-A EULER AND TRANSCENDENCE Euler and the classification of functions:algebraic or transcendent Euler, algebraic curves and transcendent curves An extensive overview of transcendent functions Euler, algebraic quantities and transcendent quantities On quantities that are not expressible by radicals A hierarchy of transcendent numbers? Transcendent numbers have a very extensive domain Euler: proofs of irrationality and conjectures of transcendence XIII-B LAMBERT AND TRANSCENDENT NUMBERS Introduction to Mémoire: on “proof by simplicity” Conclusions of Mémoire: a classification of numbers On the supremacy of symbolism and issues of ‘transcendent’ terminology XIII-C RECEPTION OF THE ENCYCLOPÉDIE (1784–1789) XIII-D ON THE TRANSCENDENCE OF NUMBERS: THE WORD AND THE CONCEPTS, FROM LEGENDRE TO HILBERT From Legendre to Liouville Hermite and Lindemann: “La transcendance est fille de l’irrationalité”42 Hilbert’s “seventh problem”: Euler-Hilbert conjecture CHAPTER XIV COMTE AND THE PHILOSOPHY OF THE TRANSCENDENT ANALYSIS The glorification of the transcendent analysis On the philosophy of mathematics About equations: formation versus resolution Leibniz, Newton, Lagrange: the trio of interpreters For a reasoned history Leibniz, the authentic creator of the transcendence. “The loftiest idea ever yet attained by the human mind” Newton: an effort to rationalize Lagrange, and the promotion of “abstraction” Differential calculus and geometry in two and three dimensions Differential calculus and integral calculus On the comparison of the interpretations The contributions of D’Alembert and Lagrange. On partial derivative equations The calculus of variations, and the ‘hypertranscendent’ analysis On the philosophy of the hypertranscendence. Singular and multiple. Variables and functions. CHAPTER XV AFTER LEIBNIZ: SOME MODERN EPISTEMOLOGICAL ASPECTS OF THE TRANSCENDENCE ON THE CONCEPTS OF LEIBNIZ TODAY Algebraic functions, transcendent functions. An initial approach Algebraic curves, transcendent curves. Modern definitions On the supremacy of the symbolism (again) On the ontology of the plane curves Curves implicitly defined On Huygens’ cubic curve Curves defined parametrically The cycloid as an example On the dialectic of the duality Algebraic numbers, transcendent numbers Leibniz, as the “founder of discursivity” of mathematical transcendence REFERENCES LEIBNIZ DESCARTES GENERAL REFERENCES