دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Lam. Tsit-Yuen
سری:
ISBN (شابک) : 9781461268024, 1461268028
ناشر: Springer
سال نشر: 2012
تعداد صفحات: 576
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 46 مگابایت
در صورت تبدیل فایل کتاب Lectures on modules and rings به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سخنرانی در مورد ماژول ها و حلقه ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
1 Free Modules, Projective, and Injective Modules.- 1. Free Modules.- 1A. Invariant Basis Number (IBN).- 1B. Stable Finiteness.- 1C. The Rank Condition.- 1D. The Strong Rank Condition.- 1E. Synopsis.- Exercises for 1.- 2. Projective Modules.- 2A. Basic Definitions and Examples.- 2B. Dual Basis Lemma and Invertible Modules.- 2C. Invertible Fractional Ideals.- 2D. The Picard Group of a Commutative Ring.- 2E. Hereditary and Semihereditary Rings.- 2F. Chase Small Examples.- 2G. Hereditary Artinian Rings.- 2H. Trace Ideals.- Exercises for 2.- 3. Injective Modules.- 3A. Baer\'s Test for Injectivity.- 3B. Self-Injective Rings.- 3C. Injectivity versus Divisibility.- 3D. Essential Extensions and Injective Hulls.- 3E. Injectives over Right Noetherian Rings.- 3F. Indecomposable Injectives and Uniform Modules.- 3G. Injectives over Some Artinian Rings.- 3H. Simple Injectives.- 31. Matlis\' Theory.- 3J. Some Computations of Injective Hulls.- 3K. Applications to Chain Conditions.- Exercises for 3.- 2 Flat Modules and Homological Dimensions.- 4. Flat and Faithfully Flat Modules.- 4A. Basic Properties and Flatness Tests.- 4B. Flatness, Torsion-Freeness, and von Neumann Regularity.- 4C. More Flatness Tests.- 4D. Finitely Presented (f.p.) Modules.- 4E. Finitely Generated Flat Modules.- 4F. Direct Products of Flat Modules.- 4G. Coherent Modules and Coherent Rings.- 4H. Semihereditary Rings Revisited.- 41. Faithfully Flat Modules.- 4J. Pure Exact Sequences.- Exercises for 4.- 5. Homological Dimensions.- 5A. Schanuel\'s Lemma and Projective Dimensions.- 5B. Change of Rings.- 5C. Injective Dimensions.- 5D. Weak Dimensions of Rings.- 5E. Global Dimensions of Semiprimary Rings.- 5F. Global Dimensions of Local Rings.- 5G. Global Dimensions of Commutative Noetherian Rings.- Exercises for 5.- 3 More Theory of Modules.- 6. Uniform Dimensions, Complements, and CS Modules.- 6A. Basic Definitions and Properties.- 6B. Complements and Closed Submodules.- 6C. Exact Sequences and Essential Closures.- 6D. CS Modules: Two Applications.- 6E. Finiteness Conditions on Rings.- 6F. Change of Rings.- 6G. Quasi-Injective Modules.- Exercises for 6.- 7. Singular Submodules and Nonsingular Rings.- 7A. Basic Definitions and Examples.- 7B. Nilpotency of the Right Singular Ideal.- 7C. Goldie Closures and the Reduced Rank.- 7D. Baer Rings and Rickart Rings.- 7E. Applications to Hereditary and Semihereditary Rings.- Exercises for 7.- 8. Dense Submodules and Rational Hulls.- 8A. Basic Definitions and Examples.- 8B. Rational Hull of a Module.- 8C. Right Kasch Rings.- Exercises for 8.- 4 Rings of Quotients.- 9. Noncommutative Localization.- 9A. \"The Good\'.- 9B. \"The Bad\'.- 9C. \"The Ugly\".- 9D. An Embedding Theorem of A. Robinson.- Exercises for 9.- 10. Classical Rings of Quotients.- 10A. Ore Localizations.- 10B. Right Ore Rings and Domains.- 10C. Polynomial Rings and Power Series Rings.- 10D. Extensions and Contractions.- Exercises for 10.- 11. Right Goldie Rings and Goldie\'s Theorems.- 11A. Examples of Right Orders.- 11B. Right Orders in Semisimple Rings.- 11C. Some Applications of Goldie\'s Theorems.- 11D. Semiprime Rings.- 11E. Nil Multiplicatively Closed Sets.- Exercises for 11.- 12. Artinian Rings of Quotients.- 12A. Goldie\'s ?-Rank.- 12B. Right Orders in Right Artinian Rings.- 12C. The Commutative Case.- 12D. Noetherian Rings Need Not Be Ore.- Exercises for 12.- 5 More Rings of Quotients.- 13. Maximal Rings of Quotients.- 13A. Endomorphism Ring of a Quasi-Injective Module.- 13B. Construction of Qrmax(R).- 13C. Another Description of Qrmax(R).- 13D. Theorems of Johnson and Gabriel.- Exercises for 13.- 14. Martindale Rings of Quotients.- 14A. Semiprime Rings Revisited.- 14B. The Rings Qr(R) and Qs(R).- 14C. The Extended Centroid.- 14D. Characterizations of and Qr(R) and Qs(R).- 14E. X-Inner Automorphisms.- 14F. A Matrix Ring Example.- Exercises for 14.- 6 Frobenius and Quasi-Frobenius Rings.- 15. Quasi-Frobenius Rings.- 15A. Basic Definitions of QF Rings.- 15B. Projectives and Injectives.- 15C. Duality Properties.- 15D. Commutative QF Rings, and Examples.- Exercises for 15.- 16. Frobenius Rings and Symmetric Algebras.- 16A. The Nakayama Permutation.- 16B. Definition of a Frobenius Ring.- 16C. Frobenius Algebras and QF Algebras.- 16D. Dimension Characterizations of Frobenius Algebras.- 16E. The Nakayama Automorphism.- 16F. Symmetric Algebras.- 16G. Why Frobenius?.- Exercises for 16.- 7 Matrix Rings, Categories of Modules, and Morita Theory.- 17. Matrix Rings.- 17A. Characterizations and Examples.- 17B. First Instance of Module Category Equivalences.- 17C. Uniqueness of the Coefficient Ring.- Exercises for 17.- 18. Morita Theory of Category Equivalences.- 18A. Categorical Properties.- 18B. Generators and Progenerators.- 18C. The Morita Context.- 18D. Morita I, II, III.- 18E. Consequences of the Morita Theorems.- 18F. The Category ? [M].- Exercises for 18.- 19. Morita Duality Theory.- 19A. Finite Cogeneration and Cogenerators.- 19B. Cogenerator Rings.- 19C. Classical Examples of Dualities.- 19D. Morita Dualities: Morita I.- 19E. Consequences of Morita I.- 19F. Linear Compactness and Reflexivity.- 19G. Morita Dualities: Morita II.- Exercises for 19.- References.- Name Index.