ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Learning Theory: 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA; June 13-15, 2007. Proceedings

دانلود کتاب نظریه یادگیری: بیستمین کنفرانس سالانه تئوری یادگیری ، COLT 2007 ، سان دیگو ، کالیفرنیا ، ایالات متحده آمریکا. 13-15 ژوئن 2007. مجموعه مقالات

Learning Theory: 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA; June 13-15, 2007. Proceedings

مشخصات کتاب

Learning Theory: 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA; June 13-15, 2007. Proceedings

دسته بندی: کامپیوتر
ویرایش: 1 
نویسندگان: , ,   
سری: Lecture Notes in Computer Science 4539 
ISBN (شابک) : 3540729275, 9783540729259 
ناشر: Springer-Verlag Berlin Heidelberg 
سال نشر: 2007 
تعداد صفحات: 645 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 5 مگابایت 

قیمت کتاب (تومان) : 37,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



کلمات کلیدی مربوط به کتاب نظریه یادگیری: بیستمین کنفرانس سالانه تئوری یادگیری ، COLT 2007 ، سان دیگو ، کالیفرنیا ، ایالات متحده آمریکا. 13-15 ژوئن 2007. مجموعه مقالات: محاسبات با دستگاه‌های انتزاعی، تحلیل الگوریتم و پیچیدگی مسئله، منطق ریاضی و زبان‌های رسمی، هوش مصنوعی (شامل رباتیک)



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Learning Theory: 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA; June 13-15, 2007. Proceedings به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نظریه یادگیری: بیستمین کنفرانس سالانه تئوری یادگیری ، COLT 2007 ، سان دیگو ، کالیفرنیا ، ایالات متحده آمریکا. 13-15 ژوئن 2007. مجموعه مقالات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نظریه یادگیری: بیستمین کنفرانس سالانه تئوری یادگیری ، COLT 2007 ، سان دیگو ، کالیفرنیا ، ایالات متحده آمریکا. 13-15 ژوئن 2007. مجموعه مقالات

این کتاب مجموعه مقالات داوری بیستمین کنفرانس سالانه نظریه یادگیری، COLT 2007، برگزار شده در سن دیگو، کالیفرنیا، ایالات متحده آمریکا در ژوئن 2007 است. و از مجموع 92 مورد ارسالی انتخاب شد. این مقالات طیف گسترده ای از موضوعات را پوشش می دهند و در بخش های موضوعی در مورد یادگیری بدون نظارت، نیمه نظارت و فعال، نظریه یادگیری آماری، استنتاج استقرایی، یادگیری منظم، روش های هسته، SVM، یادگیری آنلاین و تقویتی، الگوریتم های یادگیری و محدودیت های یادگیری، ابعاد سازماندهی شده اند. کاهش، سایر رویکردها و مشکلات باز.


توضیحاتی درمورد کتاب به خارجی

This book constitutes the refereed proceedings of the 20th Annual Conference on Learning Theory, COLT 2007, held in San Diego, CA, USA in June 2007. The 41 revised full papers presented together with 5 articles on open problems and 2 invited lectures were carefully reviewed and selected from a total of 92 submissions. The papers cover a wide range of topics and are organized in topical sections on unsupervised, semisupervised and active learning, statistical learning theory, inductive inference, regularized learning, kernel methods, SVM, online and reinforcement learning, learning algorithms and limitations on learning, dimensionality reduction, other approaches, and open problems.



فهرست مطالب

Front Matter....Pages -
Property Testing: A Learning Theory Perspective....Pages 1-2
Spectral Algorithms for Learning and Clustering....Pages 3-4
Minimax Bounds for Active Learning....Pages 5-19
Stability of k -Means Clustering....Pages 20-34
Margin Based Active Learning....Pages 35-50
Learning Large-Alphabet and Analog Circuits with Value Injection Queries....Pages 51-65
Teaching Dimension and the Complexity of Active Learning....Pages 66-81
Multi-view Regression Via Canonical Correlation Analysis....Pages 82-96
Aggregation by Exponential Weighting and Sharp Oracle Inequalities....Pages 97-111
Occam’s Hammer....Pages 112-126
Resampling-Based Confidence Regions and Multiple Tests for a Correlated Random Vector....Pages 127-141
Suboptimality of Penalized Empirical Risk Minimization in Classification....Pages 142-156
Transductive Rademacher Complexity and Its Applications....Pages 157-171
U-Shaped, Iterative, and Iterative-with-Counter Learning....Pages 172-186
Mind Change Optimal Learning of Bayes Net Structure....Pages 187-202
Learning Correction Grammars ....Pages 203-217
Mitotic Classes....Pages 218-232
Regret to the Best vs. Regret to the Average....Pages 233-247
Strategies for Prediction Under Imperfect Monitoring....Pages 248-262
Bounded Parameter Markov Decision Processes with Average Reward Criterion....Pages 263-277
On-Line Estimation with the Multivariate Gaussian Distribution....Pages 278-292
Generalised Entropy and Asymptotic Complexities of Languages....Pages 293-307
Q -Learning with Linear Function Approximation....Pages 308-322
How Good Is a Kernel When Used as a Similarity Measure?....Pages 323-335
Gaps in Support Vector Optimization....Pages 336-348
Learning Languages with Rational Kernels....Pages 349-364
Generalized SMO-Style Decomposition Algorithms....Pages 365-377
Learning Nested Halfspaces and Uphill Decision Trees....Pages 378-392
An Efficient Re-scaled Perceptron Algorithm for Conic Systems....Pages 393-408
A Lower Bound for Agnostically Learning Disjunctions....Pages 409-423
Sketching Information Divergences....Pages 424-438
Competing with Stationary Prediction Strategies....Pages 439-453
Improved Rates for the Stochastic Continuum-Armed Bandit Problem....Pages 454-468
Learning Permutations with Exponential Weights....Pages 469-483
Multitask Learning with Expert Advice....Pages 484-498
Online Learning with Prior Knowledge....Pages 499-513
Nonlinear Estimators and Tail Bounds for Dimension Reduction in l 1 Using Cauchy Random Projections....Pages 514-529
Sparse Density Estimation with ℓ 1 Penalties....Pages 530-543
ℓ 1 Regularization in Infinite Dimensional Feature Spaces....Pages 544-558
Prediction by Categorical Features: Generalization Properties and Application to Feature Ranking....Pages 559-573
Observational Learning in Random Networks....Pages 574-588
The Loss Rank Principle for Model Selection....Pages 589-603
Robust Reductions from Ranking to Classification....Pages 604-619
Rademacher Margin Complexity....Pages 620-621
Open Problems in Efficient Semi-supervised PAC Learning....Pages 622-624
Resource-Bounded Information Gathering for Correlation Clustering....Pages 625-627
Are There Local Maxima in the Infinite-Sample Likelihood of Gaussian Mixture Estimation?....Pages 628-629
When Is There a Free Matrix Lunch?....Pages 630-632
Back Matter....Pages -




نظرات کاربران