ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Learning relations from noisy examples : an empirical comparison of LINUS and FOIL

دانلود کتاب یادگیری روابط از نمونه های پر سر و صدا: مقایسه تجربی LINUS و FOIL

Learning relations from noisy examples : an empirical comparison of LINUS and FOIL

مشخصات کتاب

Learning relations from noisy examples : an empirical comparison of LINUS and FOIL

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 9781558602007, 1558602003 
ناشر: Morgan Kaufmann, , Elsevier Inc 
سال نشر: 1991 
تعداد صفحات: 652 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 20 مگابایت 

قیمت کتاب (تومان) : 38,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 16


در صورت تبدیل فایل کتاب Learning relations from noisy examples : an empirical comparison of LINUS and FOIL به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب یادگیری روابط از نمونه های پر سر و صدا: مقایسه تجربی LINUS و FOIL نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب یادگیری روابط از نمونه های پر سر و صدا: مقایسه تجربی LINUS و FOIL

مجموعه مقالات هشتمین کارگاه بین المللی (ML91) در نورث وسترن U.، ایوانستون، ایلینوی، در ژوئن 1991 برگزار شد. همه مقالات حاوی کار جدید، نتایج جدید، یا بسط های اصلی به کار قبلی هستند. موضوعات شامل کسب دانش خودکار، مدل های محاسباتی یادگیری انسان، صنعت سازنده است


توضیحاتی درمورد کتاب به خارجی

The proceedings of the Eighth International Workshop (ML91) held at Northwestern U., Evanston, Illinois, in June 1991. All papers contain new work, new results, or major extensions to prior work. Topics include automated knowledge acquisition, computational models of human learning, constructive ind



فهرست مطالب

Content: 
Front Matter, Page i
Copyright, Page ii
Preface, Page iii, Larry Birnbaum, Gregg Collins
ML91 Organizing Committee, Page iv
ML91 Workshop Committees, Page v
Design Rationale Capture as Knowledge Acquisition: Tradeoffs in the Design of Interactive Tools, Pages 3-12, Thomas Gruber, John Boose, Catherine Baudin, Jay Weber
A Domain-Independent Framework for Effective Experimentation in Planning, Pages 13-17, Yolanda Gil
Knowledge Refinement Using a High-Level, Non-Technical Vocabulary, Pages 18-22, Eric K. Jones
Improving the Performance of Inconsistent Knowledge Bases via Combined Optimization Method, Pages 23-27, Yong Ma, David C. Wilkins
The Flexibility of Speculative Refinement, Pages 28-32, Susan Craw, D. Sleeman
Generating Error Candidates for Assigning Blame in a Knowledge Base, Pages 33-37, Michael Weintraub, Tom Bylander
A Prototype Based Symbolic Concept Learning System, Pages 41-45, Michael de la Maza
Combining Evidence of Deep and Surface Similarity, Pages 46-50, Doug Fisher, Jungsoon Yoo
The Importance of Causal Structure and Facts in Evaluating Explanations, Pages 51-54, Mary Gick, Stan Matwin
Learning Words from Context, Pages 55-59, Peter M. Hastings, Steven L. Lytinen, Robert K. Lindsay
Modeling the Acquisition and Improvement of Motor Skills, Pages 60-64, Wayne Iba
A Computational Model of Acquisition for Children's Addition Strategies, Pages 65-69, Randolph M. Jones, Kurt VanLehn
Internal world models and supervised learning, Pages 70-74, Michael I. Jordan, David E. Rumelhart
Babel: A Psychologically Plausible Cross-Linguistic Model of Lexical and Syntactic Acquisition, Pages 75-79, Rick Kazman
The Acquisition of Human Planning Expertise, Pages 80-84, Pat Langley, John A. Allen
Adaptive Pattern-Oriented Chess, Pages 85-89, Robert Levinson, Richard Snyder
Variability Bias and Category Learning, Pages 90-94, Joel D. Martin, Dorrit O. Billman
A Constraint-Motivated Model of Lexical Acquisition, Pages 95-99, Craig S. Miller, John E. Laird
Computer Modelling of Acquisition Orders in Child Language, Pages 100-104, Sheldon Nicholl, David C. Wilkins
Simulating Stages of Human Cognitive Development with Connectionist Models, Pages 105-109, Thomas R. Shultz
Learning Physics Via Explanation-based Learning of Correctness and Analogical Search Control, Pages 110-114, Kurt VanLehn, Randolph M. Jones
Incremental Constructive Induction: An Instance-Based Approach, Pages 117-121, David W. Aha
A Transformational Approach to Constructive Induction, Pages 122-126, James P. Call, Paul E. Utgoff
Learning Variable Descriptors for Applying Heuristics Across CSP Problems, Pages 127-131, David S. Day
Informed Pruning in Constructive Induction, Pages 132-136, George Drastal
A Hybrid Method for Feature Generation, Pages 137-141, Tom E. Fawcett, Paul E. Utgoff
Abstracting Concepts with Inverse Resolution, Pages 142-146, A. Giordana, L. Saitta, D. Roverso
Opportunistic Constructive Induction: Using Fragments of Domain Knowledge to Guide Construction, Pages 147-152, Gregg H. Gunsch, Larry A. Rendell
Quantifying the Value of Constructive Induction, Knowledge, and Noise Filtering on Inductive Learning, Pages 153-157, Carl Myers Kadie
Discovering Production Rules with Higher Order Neural Networks: a Case Study, Pages 158-162, Adam Kowalczyk, Herman L. Ferrá, Ken Gardiner
Constructive Induction on Symbolic Features: Introducing New Comparative Terms, Pages 163-167, Bing Leng, Bruce G. Buchanan
A Critical Comparison of Various Methods Based on Inverse Resolution, Pages 168-172, Xiaofeng (Charles) Ling, Malur Aji Narayan
The Need for Constructive Induction, Pages 173-177, Christopher J. Matheus
Constructive Induction in Theory Refinement, Pages 178-182, Raymond J. Mooney, Dirk Ourston
ID2-of-3: Constructive Induction of M-of-N Concepts for Discriminators in Decision Trees, Pages 183-187, Patrick M. Murphy, Michael J. Pazzani
Relations, Knowledge and Empirical Learning, Pages 188-192, Harish Ragavan, Larry Rendell
Learning Concepts by Synthesizing Minimal Threshold Gate Networks, Pages 193-197, Arlindo L. Oliveira, Alberto Sangiovanni-Vincentelli
On the Effect of Instance Representation on Generalization, Pages 198-202, Sharad Saxena
Relational clichés: Constraining constructive induction during relational learning, Pages 203-207, Glenn Silverstein, Michael J. Pazzani
Learning Polynomial Functions by Feature Construction, Pages 208-212, Richard S. Sutton, Christopher J. Matheus
Constructive Induction in Knowledge-Based Neural Networks, Pages 213-217, Geoffrey G. Towell, Mark W. Craven, Jude W. Shavlik
Feature Construction in Structural Decision Trees, Pages 218-222, Larry Watanabe, Larry Rendell
Fringe-Like Feature Construction: A Comparative Study and a Unifying Scheme, Pages 223-227, Der-Shung Yang, Larry Rendell, Gunnar Blix
A Neural Network Approach to Constructive Induction, Pages 228-232, Dit-Yan Yeung
Learning in Intelligent Information Retrieval, Pages 235-239, David D. Lewis
A Probabilistic Retrieval Scheme for Cluster-based Adaptive Information Retrieval, Pages 240-244, Jay N. Bhuyan, Vijay V. Raghavan
Classification Trees for Information Retrieval, Pages 245-249, Stuart L. Crawford, Robert M. Fung, Lee A. Appelbaum, Richard M. Tong
Query Formulation through Knowledge Acquisition, Pages 250-254, Sanjiv K. Bhatia, Jitender S. Deogun, Vijay V. Raghavan
Incremental Learning in a Probabilistic Information Retrieval System, Pages 255-259, A. Goker, T.L. McCluskey
Query Learning Using an ANN with Adaptive Architecture, Pages 260-264, K.L. Kwok
A Goal-Based Approach to Intelligent Information Retrieval, Pages 265-269, Ashwin Ram, Lawrence Hunter
Machine Learning in the Combination of Expert Opinion Approach to IR, Pages 270-274, Paul Thompson
PREDICTING ACTIONS FROM INDUCTION ON PAST PERFORMANCE, Pages 275-279, Steven Walczak
Decision-Theoretic Learning in an Action System, Pages 283-287, Matthew Brand
On Becoming Decreasingly Reactive: Learning to Deliberate Minimally, Pages 288-292, Steve A. Chien, Melinda T. Gervasio, Gerald F. DeJong
Learning the Persistence of Actions in Reactive Control Rules, Pages 293-297, Helen G. Cobb, John J. Grefenstette
Learning to Avoid Obstacles through Reinforcement, Pages 298-302, José del R. Millan, Carme Torras
Learning Footfall Evaluation for a Walking Robot, Pages 303-307, Goang-Tay Hsu, Reid Simmons
The Blind Leading the Blind: Mutual Refinement of Approximate Theories, Pages 308-312, Smadar T. Kedar, John L. Bresina, C. Lisa Dent
Learning to Select a Model in a Changing World, Pages 313-317, Mieczyslaw M. Kokar, Spiridon A. Reveliotis
Learning from Deliberated Reactivity, Pages 318-322, Bruce Krulwich
Self-improvement Based On Reinforcement Learning, Planning and Teaching, Pages 323-327, Long-Ji Lin
Scaling Reinforcement Learning to Robotics by Exploiting the Subsumption Architecture, Pages 328-332, Sridhar Mahadevan, Jonathan Connell
Variable Resolution Dynamic Programming: Efficiently Learning Action Maps in Multivariate Real-valued State-spaces, Pages 333-337, Andrew W. Moore
Learning a Set of Primitive Actions with an Uninterpreted Sensorimotor Apparatus, Pages 338-342, David Pierce
Incremental Development of Complex Behaviors through Automatic Construction of Sensory-motor Hierarchies, Pages 343-347, Mark Ring
Transfer of Learning Across Compositions of Sequential Tasks, Pages 348-352, Satinder P. Singh
Planning by Incremental Dynamic Programming, Pages 353-357, Richard S. Sutton
Learning a Cost-Sensitive Internal Representation for Reinforcement Learning, Pages 358-362, Ming Tan
Complexity and Cooperation in Q-Learning, Pages 363-367, Steven D. Whitehead
Scaling Reinforcement Learning Techniques via Modularity, Pages 368-372, Lambert E. Wixson
Probabilistic Concept Formation in Relational Domains, Pages 375-379, John A. Allen, Kevin Thompson
Experiments in non-monotonic learning, Pages 380-384, Michael Bain
Learning Qualitative Models of Dynamic Systems, Pages 385-388, Ivan Bratko, Stephen Muggleton, Alen Varšek
An Investigation of Noise-Tolerant Relational Concept Learning Algorithms, Pages 389-393, Clifford A. Brunk, Michael J. Pazzani
Integrity Constraints and Interactive Concept-Learning, Pages 394-398, Luc De Raedt, Maurice Bruynooghe, Bern Martens
Learning Relations from Noisy Examples: An Empirical Comparison of LINUS and FOIL, Pages 399-402, Sašo Džeroski, Nada Lavrač
Inducing Temporal Fault Diagnostic Rules from a Qualitative Model, Pages 403-406, C. Feng
Learning Spatial Relations from Images, Pages 407-411, Kazuo Hiraki, John Gennari, Yoshinobu Yamamoto, Yuichiro Anzai
Using Inverse Resolution to Learn Relations from Experiments, Pages 412-416, David Hume, Claude Sammut
Efficient Learning of Logic Programs with Non-determinate, Non-discriminating Literals, Pages 417-421, Boonserm Kijsirikul, Masayuki Numao, Masamichi Shimura
Learning Search Control Rules for Planning: An Inductive Approach, Pages 422-426, Christopher Leckie, Ingrid Zukerman
Learning Constrained Atoms, Pages 427-431, C. David Page, Alan M. Prisch
A knowledge-intensive approach to learning relational concepts, Pages 432-436, Michael J. Pazzani, Clifford A. Brunk, Glenn Silverstein
THE CONSISTENT CONCEPT AXIOM, Pages 437-441, Zhaogang Qian, Keki B. Irani
Determinate Literals in Inductive Logic Programming, Pages 442-446, J.R. Quinlan
First-Order Theory Revision, Pages 447-451, Bradley L. Richards, Raymond J. Mooney
Completeness for inductive procedures, Pages 452-456, Celine ROUVEIROL
Constraints on Predicate Invention, Pages 457-461, Ruediger Wirth, Paul O'Rorke
Revising Relational Domain Theories, Pages 462-466, James Wogulis
Learning Stochastic Motifs from Genetic Sequences, Pages 467-471, Kenji Yamanishi, Akihiko Konagaya
Refinement of Approximate Reasoning-based Controllers by Reinforcement Learning, Pages 475-479, Hamid R. Berenji, Sterling Software
Improving Learning Using Causality and Abduction, Pages 480-484, M. Botta, S. Ravotto, L. Saitta, S.B. Sperotto
The DUCTOR: A Theory Revision System for Propositional Domains, Pages 485-489, Timothy Cain
The Generality Of Overgenerality, Pages 490-494, William W. Cohen
Probabilistic Evaluation of Bias for Learning Systems, Pages 495-499, Marie desJardins
Incremental Refinement of Approximate Domain Theories, Pages 500-504, Ronen Feldman, Alberto Segre, Moshe Koppel
AN ENHANCER FOR REACTIVE PLANS, Pages 505-508, Diana F. Gordon
A Hybrid Approach to Guaranteed Effective Control Strategies, Pages 509-513, Jonathan Gratch, Gerald Dejong
Revision Cost for Theory Refinement, Pages 514-518, Rei Hamakawa
Revision of Reduced Theories, Pages 519-523, Xiaofeng (Charles) Ling, Marco Valtorta
Refining Domain Theories Expressed as Finite-State Automata, Pages 524-528, Richard Maclin, Jude W. Shavlik
A SMALLEST GENERALIZATION STEP STRATEGY, Pages 529-533, Claire NEDELLEC
Improving Shared Rules in Multiple Category Domain Theories, Pages 534-538, Dirk Ourston, Raymond J. Mooney
Discovering Regularities from Large Knowledge Bases, Pages 539-543, Wei-Min Shen
Learning with Inscrutable Theories, Pages 544-548, Prasad Tadepalli
A Method for Multistrategy Task-adaptive Learning Based on Plausible Justifications, Pages 549-553, Gheorghe D. Tecuci, Ryszard S. Michalski
Using Background Knowledge in Concept Formation, Pages 554-558, Kevin Thompson, Pat Langley, Wayne Iba
A Study of How Domain Knowledge Improves Knowledge-Based Learning Systems, Pages 559-563, Bradley L. Whitehall, Stephen C-Y. Lu
Is it a Pocket or a Purse? Tightly Coupled Theory and Data Driven Learning, Pages 564-568, Edward J. Wisniewski, Douglas L. Medin
Identifying Cost Effective Boundaries of Operationality, Pages 569-573, Jungsoon Yoo, Doug Fisher
Machine Learning In Engineering Automation, Pages 577-580, Steve Chien, Bradley Whitehall, Thomas Dietterich, Richard Doyle, Brian Falkenhainer, James Garrett, Stephen Lut
Noise-Resistant Classification: Subsymbolic and Hybrid Architectures for Event Classification in Plasma Physics, Pages 581-585, Leonid V. Belyaev, Loretta P. Falcone
Comparing Stochastic Planning to the Acquisition of Increasingly Permissive Plans for Complex, Uncertain Domains, Pages 586-590, Scott Bennett, Gerald Dejong
Conceptual Clustering and Exploratory Data Analysis, Pages 591-595, Gautam Biswas, Jerry Weinberg, Qun Yang, Glenn R. Roller
Mega induction: a Test Flight, Pages 596-599, Jason Catlett
Knowledge Compilation to Speed Up Numerical Optimization, Pages 600-604, Giuseppe Cerbone, Thomas G. Dietterich
Model Revision: A Theory of Incremental Model Learning, Pages 605-609, Ashok K. Goel
Learning Analytical Knowledge about VLSI-Design from Observation, Pages 610-614, Jurgen Herrmann
Continuous Conceptual Set Covering: Learning Robot Operators From Examples, Pages 615-619, Carl Myers Kadie
Machine Learning for Nondestructive Evaluation, Pages 620-624, Paul O'Rorke, Steven Morris, Michael Amirfathi, William Bond, Daniel St. Clair
Improving Recognition Effectiveness of Noisy Texture Concepts through Optimization of Their Descriptions, Pages 625-629, Peter W. Pachowicz, Jerzy W. Bala
Knowledge-Based Equation Discovery in Engineering Domains, Pages 630-634, R. Bharat Rao, Stephen C-Y. Lu, Robert E. Stepp
Designing integrated learning systems for engineering design, Pages 635-639, Yoram Reich
Database Consistency via Inductive Learning, Pages 640-644, Jeffrey C. Schlimmer
AIMS: An Adaptive Interactive Modeling System for Supporting Engineering Decision Making, Pages 645-649, David K. Tcheng, Bruce L. Lambert, Stephen C-Y. Lu, Larry A. Rendell
Decision Tree Induction of 3-D Manufacturing Features, Pages 650-654, Larry Watanabe, Sudhakar Yerramareddy
Knowledge Acquisition Combining Analytical and Empirical Techniques, Pages 657-661, Mario Martin, Ramon Sangüesa, Ulises Cortes
AUTOMATED KNOWLEDGE ACQUISITION, Pages 663-667
Author Index, Pages 669-671




نظرات کاربران