دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Second ed.] نویسندگان: Sharath Kumar M. N., Pranav Shukla سری: ISBN (شابک) : 9781789958539, 1789958539 ناشر: سال نشر: 2019 تعداد صفحات: [461] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 30 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Learning Elastic Stack 7.0 : distributed search, analytics, and visualization using Elasticsearch, Logstash, Beats, and Kibana به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری Elastic Stack 7.0: جستجوی توزیع شده ، تجزیه و تحلیل و تجسم با استفاده از Elasticsearch ، Logstash ، Beats و Kibana نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
راهنمای مبتدیان برای ذخیره، مدیریت و تجزیه و تحلیل داده ها با ویژگی های به روز شده Elastic 7.0 ویژگی های کلیدی دسترسی به ویژگی ها و به روز رسانی های جدید معرفی شده در Elastic Stack 7.0 درک اصول Elastic Stack از جمله Elasticsearch، Logstash، و Kibana نکات مفیدی را برای استفاده کاوش کنید. Elastic Cloud و استقرار Elastic Stack در محیطهای تولید توضیحات کتاب Elastic Stack ترکیبی قدرتمند از ابزارها برای تکنیکهایی مانند جستجوی توزیعشده، تجزیه و تحلیل، گزارشگیری و تجسم دادهها است. Elastic Stack 7.0 ویژگیها و قابلیتهای جدیدی را در بر میگیرد که به شما امکان میدهد با استفاده از این تکنیکها، بینش منحصربهفردی در مورد تجزیه و تحلیل پیدا کنید. این کتاب به شما درک اساسی از چیستی پشته می دهد و به شما کمک می کند تا از آن به طور موثر برای ساخت برنامه های پردازش داده در زمان واقعی قدرتمند استفاده کنید. چند بخش اول کتاب به شما کمک میکند تا با نصب ابزارها و کاوش در پیکربندیهای اولیه آنها، نحوه تنظیم پشته را درک کنید. سپس با استفاده از Elasticsearch برای جستجوی توزیع شده و تجزیه و تحلیل، Logstash برای ورود به سیستم و Kibana برای تجسم دادهها، سرعت بیشتری خواهید گرفت. همانطور که در کتاب کار می کنید، تکنیک ایجاد پلاگین های سفارشی با استفاده از Kibana و Beats را کشف خواهید کرد. پس از آن پوشش Elastic X-Pack، یک برنامه افزودنی مفید برای امنیت و نظارت موثر است. همچنین نکات مفیدی در مورد نحوه استفاده از Elastic Cloud و استقرار Elastic Stack در محیط های تولید پیدا خواهید کرد. در پایان این کتاب، شما به خوبی با عملکردهای اساسی Elastic Stack و نقش هر جزء در پشته برای حل مشکلات مختلف پردازش داده آشنا خواهید شد. آنچه یاد خواهید گرفت نصب و پیکربندی یک معماری Elasticsearch مشکل جستجوی متن کامل را با Elasticsearch حل کنید با استفاده از Elasticsearch قابلیت های تجزیه و تحلیل قدرتمند را از طریق انباشته ها کشف کنید. ایجاد خط لوله داده برای انتقال داده ها از منابع مختلف به Elasticsearch برای تجزیه و تحلیل ایجاد داشبوردهای تعاملی برای داستان سرایی موثر با داده های خود را با استفاده از Kibana بیاموزید چگونه ایمن کنید، نظارت کنید و از قابلیت های هشدار و گزارش Elastic Stack استفاده کنید. مهندسان، توسعه دهندگان تجارت الکترونیک و توسعه دهندگان تمام پشته که می خواهند در مورد Elastic Stack و نحوه کارکرد موتور جستجو و پردازش بلادرنگ برای تحلیل های تجاری و برنامه های جستجوی سازمانی بیاموزند. تجربه قبلی با Elastic Stack لازم نیست، با این حال دانش انبار داده و مفاهیم پایگاه داده مفید خواهد بود.
A beginner's guide to storing, managing, and analyzing data with the updated features of Elastic 7.0 Key Features Gain access to new features and updates introduced in Elastic Stack 7.0 Grasp the fundamentals of Elastic Stack including Elasticsearch, Logstash, and Kibana Explore useful tips for using Elastic Cloud and deploying Elastic Stack in production environments Book Description The Elastic Stack is a powerful combination of tools for techniques such as distributed search, analytics, logging, and visualization of data. Elastic Stack 7.0 encompasses new features and capabilities that will enable you to find unique insights into analytics using these techniques. This book will give you a fundamental understanding of what the stack is all about, and help you use it efficiently to build powerful real-time data processing applications. The first few sections of the book will help you understand how to set up the stack by installing tools, and exploring their basic configurations. You’ll then get up to speed with using Elasticsearch for distributed searching and analytics, Logstash for logging, and Kibana for data visualization. As you work through the book, you will discover the technique of creating custom plugins using Kibana and Beats. This is followed by coverage of the Elastic X-Pack, a useful extension for effective security and monitoring. You’ll also find helpful tips on how to use Elastic Cloud and deploy Elastic Stack in production environments. By the end of this book, you’ll be well versed with the fundamental Elastic Stack functionalities and the role of each component in the stack to solve different data processing problems. What you will learn Install and configure an Elasticsearch architecture Solve the full-text search problem with Elasticsearch Discover powerful analytics capabilities through aggregations using Elasticsearch Build a data pipeline to transfer data from a variety of sources into Elasticsearch for analysis Create interactive dashboards for effective storytelling with your data using Kibana Learn how to secure, monitor and use Elastic Stack’s alerting and reporting capabilities Take applications to an on-premise or cloud-based production environment with Elastic Stack Who this book is for This book is for entry-level data professionals, software engineers, e-commerce developers, and full-stack developers who want to learn about Elastic Stack and how the real-time processing and search engine works for business analytics and enterprise search applications. Previous experience with Elastic Stack is not required, however knowledge of data warehousing and database concepts will be helpful.
Cover Title Page Copyright and Credits About Packt Contributors Table of Contents Preface Section 1: Introduction to Elastic Stack and Elasticsearch Chapter 1: Introducing Elastic Stack What is Elasticsearch, and why use it? Schemaless and document-oriented Searching capability Analytics Rich client library support and the REST API Easy to operate and easy to scale Near real-time capable Lightning–fast Fault-tolerant Exploring the components of the Elastic Stack Elasticsearch Logstash Beats Kibana X-Pack Security Monitoring Reporting Alerting Graph Machine learning Elastic Cloud Use cases of Elastic Stack Log and security analytics Product search Metrics analytics Web search and website search Downloading and installing Installing Elasticsearch Installing Kibana Summary Chapter 2: Getting Started with Elasticsearch Using the Kibana Console UI Core concepts of Elasticsearch Indexes Types Documents Nodes Clusters Shards and replicas Mappings and datatypes Datatypes Core datatypes Complex datatypes Other datatypes Mappings Creating an index with the name catalog Defining the mappings for the type of product Inverted indexes CRUD operations Index API Indexing a document by providing an ID Indexing a document without providing an ID Get API Update API Delete API Creating indexes and taking control of mapping Creating an index Creating type mapping in an existing index Updating a mapping REST API overview Common API conventions Formatting the JSON response Dealing with multiple indexes Searching all documents in one index Searching all documents in multiple indexes Searching all the documents of a particular type in all indexes Summary Section 2: Analytics and Visualizing Data Chapter 3: Searching - What is Relevant The basics of text analysis Understanding Elasticsearch analyzers Character filters Tokenizer Standard tokenizer Token filters Using built-in analyzers Standard analyzer Implementing autocomplete with a custom analyzer Searching from structured data Range query Range query on numeric types Range query with score boosting Range query on dates Exists query Term query Searching from the full text Match query Operator Minimum should match Fuzziness Match phrase query Multi match query Querying multiple fields with defaults Boosting one or more fields With types of multi match queries Writing compound queries Constant score query Bool query Combining OR conditions Combining AND and OR conditions Adding NOT conditions Modeling relationships has_child query has_parent query parent_id query Summary Chapter 4: Analytics with Elasticsearch The basics of aggregations Bucket aggregations Metric aggregations Matrix aggregations Pipeline aggregations Preparing data for analysis Understanding the structure of the data Loading the data using Logstash Metric aggregations Sum, average, min, and max aggregations Sum aggregation Average aggregation Min aggregation Max aggregation Stats and extended stats aggregations Stats aggregation Extended stats aggregation Cardinality aggregation Bucket aggregations Bucketing on string data Terms aggregation Bucketing on numerical data Histogram aggregation Range aggregation Aggregations on filtered data Nesting aggregations Bucketing on custom conditions Filter aggregation Filters aggregation Bucketing on date/time data Date Histogram aggregation Creating buckets across time periods Using a different time zone Computing other metrics within sliced time intervals Focusing on a specific day and changing intervals Bucketing on geospatial data Geodistance aggregation GeoHash grid aggregation Pipeline aggregations Calculating the cumulative sum of usage over time Summary Chapter 5: Analyzing Log Data Log analysis challenges Using Logstash Installation and configuration Prerequisites Downloading and installing Logstash Installing on Windows Installing on Linux Running Logstash The Logstash architecture Overview of Logstash plugins Installing or updating plugins Input plugins Output plugins Filter plugins Codec plugins Exploring plugins Exploring input plugins File Beats JDBC IMAP Output plugins Elasticsearch CSV Kafka PagerDuty Codec plugins JSON Rubydebug Multiline Filter plugins Ingest node Defining a pipeline Ingest APIs Put pipeline API Get pipeline API Delete pipeline API Simulate pipeline API Summary Chapter 6: Building Data Pipelines with Logstash Parsing and enriching logs using Logstash Filter plugins CSV filter Mutate filter Grok filter Date filter Geoip filter Useragent filter Introducing Beats Beats by Elastic.co Filebeat Metricbeat Packetbeat Heartbeat Winlogbeat Auditbeat Journalbeat Functionbeat Community Beats Logstash versus Beats Filebeat Downloading and installing Filebeat Installing on Windows Installing on Linux Architecture Configuring Filebeat Filebeat inputs Filebeat general/global options Output configuration Logging Filebeat modules Summary Chapter 7: Visualizing Data with Kibana Downloading and installing Kibana Installing on Windows Installing on Linux Configuring Kibana Preparing data Kibana UI User interaction Configuring the index pattern Discover Elasticsearch query string/Lucene query Elasticsearch DSL query KQL Visualize Kibana aggregations Bucket aggregations Metric Creating a visualization Visualization types Line, area, and bar charts Data tables Markdown widgets Metrics Goals Gauges Pie charts Co-ordinate maps Region maps Tag clouds Visualizations in action Response codes over time Top 10 requested URLs Bandwidth usage of the top five countries over time Web traffic originating from different countries Most used user agent Dashboards Creating a dashboard Saving the dashboard Cloning the dashboard Sharing the dashboard Timelion Timelion Timelion expressions Using plugins Installing plugins Removing plugins Summary Section 3: Elastic Stack Extensions Chapter 8: Elastic X-Pack [Installation] Installation Activating X-Pack trial account Generating passwords for default users Configuring X-Pack Securing Elasticsearch and Kibana User authentication User authorization Security in action Creating a new user Deleting a user Changing the password Creating a new role Deleting or editing a role Document-level security or field-level security X-Pack security APIs User Management APIs Role Management APIs Monitoring Elasticsearch Monitoring UI Elasticsearch metrics Overview tab Nodes tab The Indices tab Alerting Anatomy of a watch Alerting in action Creating a new alert Threshold Alert Advanced Watch Deleting/deactivating/editing a watch Summary Section 4: Production and Server Infrastructure Chapter 9: Running Elastic Stack in Production Hosting Elastic Stack on a managed cloud Getting up and running on Elastic Cloud Using Kibana Overriding configuration Recovering from a snapshot Hosting Elastic Stack on your own Selecting hardware Selecting an operating system Configuring Elasticsearch nodes JVM heap size Disable swapping File descriptors Thread pools and garbage collector Managing and monitoring Elasticsearch Running in Docker containers Special considerations while deploying to a cloud Choosing instance type Changing default ports; do not expose ports! Proxy requests Binding HTTP to local addresses Installing EC2 discovery plugin Installing the S3 repository plugin Setting up periodic snapshots Backing up and restoring Setting up a repository for snapshots Shared filesystem Cloud or distributed filesystems Taking snapshots Restoring a specific snapshot Setting up index aliases Understanding index aliases How index aliases can help Setting up index templates Defining an index template Creating indexes on the fly Modeling time series data Scaling the index with unpredictable volume over time Unit of parallelism in Elasticsearch The effect of the number of shards on the relevance score The effect of the number of shards on the accuracy of aggregations Changing the mapping over time New fields get added Existing fields get removed Automatically deleting older documents How index-per-timeframe solves these issues Scaling with index-per-timeframe Changing the mapping over time Automatically deleting older documents Summary Chapter 10: Building a Sensor Data Analytics Application Introduction to the application Understanding the sensor-generated data Understanding the sensor metadata Understanding the final stored data Modeling data in Elasticsearch Defining an index template Understanding the mapping Setting up the metadata database Building the Logstash data pipeline Accepting JSON requests over the web Enriching the JSON with the metadata we have in the MySQL database The jdbc_streaming plugin The mutate plugin Moving the looked-up fields that are under lookupResult directly in JSON Combining the latitude and longitude fields under lookupResult as a location field Removing the unnecessary fields Store the resulting documents in Elasticsearch Sending data to Logstash over HTTP Visualizing the data in Kibana Setting up an index pattern in Kibana Building visualizations How does the average temperature change over time? How does the average humidity change over time? How do temperature and humidity change at each location over time? Can I visualize temperature and humidity over a map? How are the sensors distributed across departments? Creating a dashboard Summary Chapter 11: Monitoring Server Infrastructure Metricbeat Downloading and installing Metricbeat Installing on Windows Installing on Linux Architecture Event structure Configuring Metricbeat Module configuration Enabling module configs in the modules.d directory Enabling module configs in the metricbeat.yml file General settings Output configuration Logging Capturing system metrics Running Metricbeat with the system module Specifying aliases Visualizing system metrics using Kibana Deployment architecture Summary Other Books You May Enjoy Index