دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Gaurav Leekha
سری:
ISBN (شابک) : 939139261X, 9789391392611
ناشر: BPB Publications
سال نشر: 2021
تعداد صفحات: 270
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 Mb
در صورت تبدیل فایل کتاب Learn AI with Python: Explore Machine Learning and Deep Learning techniques for Building Smart AI Systems Using Scikit-Learn, NLTK, NeuroLab, and Keras (English Edition) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری هوش مصنوعی با پایتون: کاوش تکنیکهای یادگیری ماشینی و یادگیری عمیق برای ساختن سیستمهای هوش مصنوعی هوشمند با استفاده از Scikit-Learn، NLTK، NeuroLab و Keras (نسخه انگلیسی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Build AI applications using Python to intelligently interact with the world around you.
Key Features
● Covers the practical aspects of Machine Learning and
Deep Learning concepts with the help of this example-rich
guide to Python.
● Includes graphical illustrations of Natural Language
Processing and its implementation in NLTK.
● Covers deep learning models such as R-CNN and YOLO for object recognition and teaches how to build an image classifier using CNN.
Description
The book ‘Learn AI with Python’ is intended to provide
you with a thorough understanding of artificial intelligence
as well as the tools necessary to create your intelligent
applications.
This book introduces you to artificial intelligence and
walks you through the process of establishing an AI
environment on a variety of platforms. It dives into machine
learning models and various predictive modeling techniques,
including classification, regression, and clustering.
Additionally, it provides hands-on experience with logic
programming, ASR, neural networks, and natural language
processing through real-world examples and fully functional
Python implementation. Finally, the book deals with profound
models of learning such as R-CNN and YOLO. Object detection
in images is also explained in detail using Convolutional
Neural Networks (CNNs), which are also explained.
By the end of this book, you will have a firm grasp of machine learning and deep learning techniques, as well as a steered methodology for formulating and solving related problems.
What you will learn
● Learn to implement various machine learning and deep
learning algorithms to achieve smart results.
● Understand how ML algorithms can be applied to
real-life applications.
● Explore logic programming and learn how to use it
practically to solve real-life problems.
● Learn to develop different types of artificial neural
networks with Python.
● Understand reinforcement learning and how to build an
environment and agents using Python.
● Work with NLTK and build an automatic speech recognition system.
Who this book is for
This book is for anyone interested in learning about artificial intelligence and putting it into practice with Python. This book is also valuable for intermediate Machine Learning practitioners as a reference guide. Readers should be familiar with the fundamental understanding of Python programming and machine learning techniques.
Table of Contents
1. Introduction to AI and Python
2. Machine Learning and Its Algorithms
3. Classification and Regression Using Supervised
Learning
4. Clustering Using Unsupervised Learning
5. Solving Problems with Logic Programming
6. Natural Language Processing with Python
7. Implementing Speech Recognition with
Python
8. Implementing Artificial Neural Network (ANN) with
Python
9. Implementing Reinforcement Learning with
Python
10. Implementing Deep Learning and Convolutional Neural Network