ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Layer-by-layer films for biomedical applications

دانلود کتاب فیلم های لایه به لایه برای کاربردهای زیست پزشکی

Layer-by-layer films for biomedical applications

مشخصات کتاب

Layer-by-layer films for biomedical applications

ویرایش:  
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9783527675869, 3527675892 
ناشر: Wiley-VCH 
سال نشر: 2015 
تعداد صفحات: 588 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 14 مگابایت 

قیمت کتاب (تومان) : 53,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Layer-by-layer films for biomedical applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب فیلم های لایه به لایه برای کاربردهای زیست پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Content: Foreword XVII     Preface XIX     About the Editors XXI     List of Contributors XXIII     Part I: Control of Cell/Film Interactions 1     1 Controlling Cell Adhesion Using pH-Modified Polyelectrolyte Multilayer Films 3 Marcus S. Niepel, Kristin Kirchhof, Matthias Menzel, Andreas Heilmann, and Thomas Groth     1.1 Introduction 3     1.2 Influence of pH-Modified PEM Films on Cell Adhesion and Growth 5     1.2.1 HEP/CHI Multilayers 5     1.2.2 PEI/HEP Multilayers 16     1.3 Summary and Outlook 24     Acknowledgments 25     References 25     2 The Interplay of Surface and Bulk Properties of Polyelectrolyte Multilayers in Determining Cell Adhesion 31 Joseph B. Schlenoff and Thomas C.S. Keller     2.1 Surface Properties 33     2.2 Bulk Modulus 38     References 42     3 Photocrosslinked Polyelectrolyte Films of Controlled Stiffness to Direct Cell Behavior 45 Naresh Saha, Claire Monge, Thomas Boudou, Catherine Picart, and Karine Glinel     3.1 Introduction 45     3.2 Elaboration of Homogeneous Films of Varying Rigidity 48     3.3 Elaboration of Rigidity Patterns 52     3.4 Behavior of Mammalian Cells on Homogeneous and Photopatterned Films 54     3.5 Influence of Film Rigidity on Bacterial Behavior 58     3.6 Conclusion 61     Acknowledgments 61     References 62     4 Nanofilm Biomaterials: Dual Control of Mechanical and Bioactive Properties 65 Emmanuel Pauthe and Paul R. Van Tassel     4.1 Introduction 65     4.2 Surface Cross-Linking 67     4.3 NP Templating 69     4.4 Discussion 73     4.5 Conclusions 75     Acknowledgments 75     References 75     5 Bioactive and Spatially Organized LbL Films 79 Zhengwei Mao, Shan Yu, and Changyou Gao     5.1 Introduction 79     5.2 Role of Chemical Properties 80     5.2.1 Bulk Composition 80     5.2.2 Surface Chemistry 83     5.3 Role of Physical Properties 85     5.3.1 Mechanical Property 85     5.3.2 Topography 89     5.4 Spatially Organized PEMs 89     5.4.1 Patterned PEMs 89     5.4.2 Gradient PEMs 91     5.5 Conclusions and Future Perspectives 92     Acknowledgments 94     References 94     6 Controlling StemCell Adhesion, Proliferation, and Differentiation with Layer-by-Layer Films 103 Stewart Wales, Guak-Kim Tan, and Justin J. Cooper-White     6.1 Introduction 103     6.1.1 Types of Stem Cells 103     6.1.2 Stem Cell Fate Choices 104     6.1.3 The Stem Cell    Niche    104     6.1.4 Influencing Stem Cell Fate Choice 106     6.2 Mesenchymal Stem Cells and Layer-by-Layer Films 107     6.2.1 Human MSC Adhesion, Proliferation, and Differentiation 107     6.2.2 Murine MSC Adhesion, Proliferation, and Differentiation 114     6.3 Pluripotent Stem Cells and Layer-by-Layer Films 116     6.3.1 Murine ESC Adhesion, Proliferation, and Maintenance of Potency 117     6.3.2 Murine ESC Differentiation 120     6.3.3 Human ESC Adhesion, Proliferation, and Differentiation 122     6.4 Future Directions and Trends 123     References 124     Part II: Delivery of Small Drugs, DNA and siRNA 131     7 Engineering Layer-by-Layer Thin Films for Multiscale and Multidrug Delivery Applications 133 Nisarg J. Shah, Bryan B. Hsu, Erik C. Dreaden, and Paula T. Hammond     7.1 Introduction 133     7.1.1 The Promise of LbL Delivery 133     7.1.2 Growth in the LbL Delivery Field 135     7.1.3 Brief Outline of Chapter 135     7.2 Engineering LbL Release Mechanisms     from Fast to Slow Release 136     7.2.1 Overview 136     7.2.2 Tuning Hydrolytic Release 137     7.2.3 Small Molecule Release 139     7.2.4 H-Bond-Based Release of Molecules 141     7.2.5 Impact of Assembly Approach and Spray-LbL 142     7.2.6 Other Mechanisms of Release 143     7.2.7 Controlling Release Kinetics and Manipulating Sequential Release 144     7.3 LbL Biologic Release for Directing Cell Behavior 145     7.3.1 Overview 145     7.3.2 Controlled Growth Factor Delivery for Tissue Engineering 146     7.3.3 Growth Factor Delivery with Synergistic Impact 148     7.3.4 Staggering Release of Drugs from LbL Films with    Barrier    Layers 151     7.3.5 Nucleic Acid Delivery as a Modulator of Cell Response 152     7.4 Moving LbL Release Technologies to the Nanoscale: LbL Nanoparticles 156     7.4.1 Overview     Nanoparticle Delivery Challenges 156     7.4.2 Tuning LbL Systems for Systemic Delivery     Stability, Blood Half-life 156     7.4.3 Adapting LbL Nanoparticles for Targeting 158     7.4.4 Dual Drug Combinations 160     7.5 Conclusions and Perspective on Future Directions 162     7.5.1 Translation of Technologies 163     Acknowledgments 165     References 165     8 Polyelectrolyte Multilayer Coatings for the Release and Transfer of Plasmid DNA 171 David M. Lynn     8.1 Introduction 171     8.2 Fabrication of Multilayers Using Plasmid DNA and Hydrolytically Degradable Polyamines 173     8.3 Toward Therapeutic Applications In vivo Contact-Mediated Approaches to Vascular Gene Delivery 178     8.3.1 Transfer of DNA to Arterial Tissue Using Film-Coated Intravascular Stents 178     8.3.2 Transfer of DNA to Arterial Tissue Using Film-Coated Balloon Catheters 180     8.3.3 Beyond Reporter Genes: Approaches to the Reduction of Intimal Hyperplasia in Injured Arteries 182     8.3.4 Other Potential Applications 184     8.4 Exerting Temporal Control over the Release of DNA 184     8.4.1 New Polymers and Principles: Degradable Polyamines and    Charge Shifting    Cationic Polymers 185     8.4.2 Multicomponent Multilayers for the Release of Multiple DNA Constructs 187     8.5 Concluding Remarks 190     Acknowledgments 190     References 191     9 LbL-Based Gene Delivery: Challenges and Promises 195 Joelle Ogier     9.1 LbL-DNA Delivery 195     9.1.1 Pioneer Designs 196     9.1.2 DNA Spatial and Temporal Scheduled Delivery 199     9.1.3 Pending Challenges: From In Vitro Substrate-Mediated Gene Delivery to In Vivo Formulations 201     9.2 LbL-siRNA Delivery 202     9.3 Concluding Remarks 204     References 205     10 Subcompartmentalized Surface-Adhering Polymer Thin Films Toward Drug Delivery Applications 207 Boon M. Teo, Martin E. Lynge, Leticia Hosta-Rigau, and Brigitte Stadler     10.1 Introduction 207     10.2 Cyclodextrin (CD)-Containing LbL Films 208     10.2.1 Assembly 209     10.2.2 Drug Delivery Applications 209     10.3 Block Copolymer Micelle (BCM)-Containing LbL Films 212     10.3.1 Assembly 213     10.3.2 Drug Delivery Applications 215     10.4 Liposome-Containing LbL Films 215     10.4.1 Assembly 216     10.4.2 Cargo Release Capability from Liposomes within LbL Films 219     10.4.3 Drug Delivery Applications 219     10.5 LbL Films Containing Miscellaneous Drug Deposits 222     10.6 Conclusion/Outlook 224     References 225     Part III: Nano- and Microcapsules as Drug Carriers 233     11 Multilayer Capsules for In vivo Biomedical Applications 235 Bruno G. De Geest and Stefaan De Koker     11.1 Introduction 235     11.2 A Rationale for Functionally Engineered Multilayer Capsules 236     11.2.1 General Considerations 236     11.2.2 Multilayer Capsules Responding to Physicochemical and Physiological Stimuli 238     11.3 In vivo Fate of Multilayer Capsules 241     11.3.1 Tissue Response 241     11.3.2 In vivo Uptake and Degradation 243     11.3.3 Blood Circulation 245     11.4 Vaccine Delivery via Multilayer Capsules 246     11.5 Tumor Targeting via Multilayer Capsules 252     11.6 Concluding Remarks 253     References 254     12 Light-AddressableMicrocapsules 257 Markus Ochs,Wolfgang J. Parak, Joanna Rejman, and Susana Carregal-Romero     12.1 Introduction 257     12.2 Light-Responsive Components 258     12.2.1 Light-Responsive Polyelectrolytes and Molecules 258     12.2.2 Light-Responsive Shells 259     12.2.3 Light-Responsive Nanoparticles 259     12.3 Capsule Synthesis and Loading 261     12.4 Gold-Modified Layer-by-Layer Capsules 264     12.5 Morphological Changes of Capsules and Nanoparticles 267     12.6 Bubble Formation 267     12.7 Cytosolic Release 269     12.8 Triggering Cytosolic Reactions 272     12.9 Conclusions and Perspectives 274     Acknowledgments 275     References 275     13 Nanoparticle Functionalized Surfaces 279 Mihaela Delcea, Helmuth Moehwald, and Andre G. Skirtach     13.1 Introduction 279     13.2 Nanoparticles on Polyelectrolyte Multilayer LbL Capsules 281     13.2.1 Adsorption of Nanoparticles onto Polyelectrolyte Multilayer Capsules 281     13.2.2 Light- and Magnetic-Field-Induced Permeability Control 282     13.2.3 Fluorescence Imaging Using Quantum Dots 284     13.2.4 Magnetic Nanoparticles: Activation and Targeting 284     13.2.5 Catalysis Using Nanoparticles 285     13.2.6 Enhancement of Mechanical Properties of Capsules 285     13.2.7 Anisotropic Capsules 286     13.3 Nanoparticles on Polyelectrolyte LbL Films 287     13.3.1 LbL Films and Adsorption of Nanoparticles onto Films 287     13.3.2 Laser Activation 287     13.3.3 Fluorescent Labeling of Films 289     13.3.4 Increasing the Stiffness of Films for Cell Adhesion and Control over Asymmetric Particle Fabrication 289     13.3.5 Additional Functionalities through Addition of Nanoparticles 290     13.4 Conclusions 290     References 292     14 Layer-by-Layer Microcapsules Based on Functional Polysaccharides 295 Anna Szarpak-Jankowska, Jing Jing, and Rachel Auzely-Velty     14.1 Introduction 295     14.2 Fabrication of Polysaccharide Capsules by the LbL Technique 296     14.2.1 Natural Charged Polysaccharides Used in LbL Capsules 296     14.2.2 General Methods for the Assembly of Polysaccharides into LbL Capsules 297     14.2.3 Cross-Linking of the Polysaccharide Shells 298     14.2.4 Functional Multilayer Shells Based on Chemically Modified Polysaccharides 300     14.3 Biomedical Applications 302     14.4 Interactions with Living Cells 305     14.5 Conclusion 306     References 307     15 Nanoengineered Polymer Capsules: Moving into the Biological Realm 309 Katelyn T. Gause, Yan Yan, and Frank Caruso     15.1 Introduction 309     15.2 Capsule Design and Assembly 310     15.2.1 Templates 310     15.2.2 Materials and Assembly Interactions 312     15.2.3 Cargo Encapsulation 315     15.2.4 Biological Stimuli-Responsive Cargo Release 318     15.3 Capsules at the Biological Interface 321     15.3.1 Circulation and Biodistribution 322     15.3.2 Cellular Interactions 323     15.3.3 Intracellular Trafficking 324     15.4 Biological Applications 326     15.4.1 Anticancer Drug Delivery 326     15.4.2 Vaccine Delivery 329     15.4.3 Biosensors and Bioreactors 331     15.5 Conclusion and Outlook 335     References 336     16 Biocompatible and BiogenicMicrocapsules 343 Jie Zhao, Jinbo Fei, and Junbai Li     16.1 Introduction 343     16.2 LbL Assembly of Biocompatible and Biogenic Microcapsules 344     16.2.1 Lipid-Based Microcapsules 344     16.2.2 Polysaccharide-Based Microcapsules 346     16.2.3 Protein-Based Microcapsules 348     16.3 Applications 349     16.3.1 Drug Carriers for Cancer Treatment 350     16.3.2 Blood Substitutes 356     16.4 Conclusions and Perspectives 358     Acknowledgments 358     References 358     17 Three-Dimensional Multilayered Devices for Biomedical Applications 363 Rui R. Costa and Joao F. Mano     17.1 Introduction 363     17.2 Freestanding Multilayer Films 364     17.2.1 Pure Freestanding Membranes 364     17.2.2 Hybrid LbL-Assisted Techniques 366     17.3 Tubular Structures 366     17.4 Spherical Coated Shapes 368     17.4.1 Drug Carriers 369     17.4.2 Biosensors 371     17.5 Complex LbL Devices with Compartmentalization and Hierarchical Components 372     17.5.1 Confined Chemical Reactions 373     17.5.2 Customized Multifunctional Reactors 374     17.6 Porous Structures 376     17.7 Conclusions 377     Acknowledgments 378     References 378     Part IV: Engineered Tissues and Coatings of Implants 385     18 Polyelectrolyte Multilayer Film     A Smart Polymer for Vascular Tissue Engineering 387 Patrick Menu and Halima Kerdjoudj     18.1 Layer by Layer Coating 388     18.2 Anti-Adhesive Properties of PEMs 388     18.3 Adhesion Properties of PEMs and Their Use in Vascular Tissue Engineering 389     18.4 Polyelectrolyte Multilayer Films and Stem Cell Behavior 390     18.5 PEM Coating of Vascular Prosthesis 391     18.6 Functional PEMs Mimicking Endothelial Cell Function 391     18.7 Conclusion 392     References 392     19 Polyelectrolyte Multilayers as Robust Coating for Cardiovascular Biomaterials 399 Kefeng Ren and Jian Ji     19.1 Introduction 399     19.2 The Basement Membrane:The Bioinspired Cue for Cardiovascular Regeneration 400     19.3 PEMs as a Feasible Method for Immobilization: From Antithrombosis to the Synergistic Interaction 401     19.4 Controlled Delivery from PEMs: From Small Molecule Drugs and Bioactive Molecules to Genes 403     19.5 Effects of Mechanical Properties of PEMs on Cellular Events 406     19.6 PEM as a Coating for Cardiovascular Device: From In vitro to In vivo 407     19.7 Conclusion and Perspectives 412     References 412     20 LbL Nanofilms Through Biological Recognition for 3D Tissue Engineering 419 Michiya Matsusaki andMitsuru Akashi     20.1 Introduction 419     20.2 A Bottom-Up Approach for 3D Tissue Construction 421     20.2.1 Hierarchical Cell Manipulation Technique 422     20.2.2 Blood VesselWall Model 432     Model 433     20.2.3 Blood Capillary Model 436     20.2.4 Perfusable Blood Vessel Channel Model 439     20.2.5 Engineering 3D Tissue Chips by Inkjet Cell Printing 442     20.3 Conclusions 447     Acknowledgments 447     References 447     21 Matrix-Bound Presentation of Bone Morphogenetic Protein 2 by Multilayer Films: Fundamental Studies and Applications to Orthopedics 453 Flora Gilde, Raphael Guillot, Laure Fourel, Jorge Almodovar, Thomas Crouzier, Thomas Boudou, and Catherine Picart     21.1 Introduction 453     21.2 BMP-2 Loading: Physico-Chemistry and Secondary Structure 455     21.2.1 Tunable Parameters for BMP-2 Loading 455     21.2.2 Secondary Structure of BMP-2 in Hydrated and Dry Films 458     21.3 Osteoinductive Properties of Matrix-Bound BMP-2 In vitro 461     21.4 Early Cytoskeletal Effects of BMP-2 463     21.5 Toward In vivo Applications for Bone Repair 467     21.5.1 Characterization of PEM Film Deposition on TCP/HAP Granules and on Porous Titanium 467     21.5.2 Sterilization by   -Irradiation 469     21.5.3 Osteoinduction In vivo 471     21.6 Toward Spatial Control of Differentiation 475     21.7 Conclusions 477     Acknowledgments 478     List of Abbreviations 478     References 479     22 Polyelectrolyte Multilayers for Applications in Hepatic Tissue Engineering 487 Margaret E. Cassin and Padmavathy Rajagopalan     22.1 Introduction 487     22.1.1 The Liver 489     22.1.2 Hepatic Tissue Engineering 491     22.1.3 PEMs and Hepatic Tissue Engineering 491     22.2 PEMs for 2D Hepatic Cell Cultures 492     22.2.1 Tuning Mechanical and Chemical Properties of PEMs 492     22.3 PEMs for 3D Hepatic Cell Cultures 495     22.3.1 PEMs that Mimic the Space of Disse 495     22.3.2 Porous Scaffolds for Hepatic Cell Cultures 496     22.3.3 3D PEM Stamping for Primary Hepatocyte Co-cultures 498     22.4 Conclusions 498     Acknowledgments 498     References 499     23 Polyelectrolyte Multilayer Film for the Regulation of Stem Cells in Orthopedic Field 507 Yan Hu and Kaiyong Cai     23.1 Introduction 507     23.2 Layer-by-Layer Assembly and Classification 508     23.3 Classic Polyelectrolyte Multilayer Films (Intermediate Layer) 509     23.3.1 Bioactive Multilayer Films 509     23.3.2 Gene-Activating Multilayer Film 512     23.4 Hybrid Polyelectrolyte Multilayer Film 514     23.4.1 Growth Factors or Cytokines Embedding Hybrid Layer 515     23.4.2 Drug Embedding Hybrid Layer 516     23.4.3 Nanoparticles Embedding Hybrid Layer 518     23.5    Protecting    Polyelectrolyte Multilayer Film (Cover Layer) 518     23.6 Conclusion and Perspective 521     References 521     24 Axonal Regeneration and Myelination: Applicability of the Layer-by-Layer Technology 525 Chun Liu, Ryan Pyne, Seungik Baek, Jeffrey Sakamoto, Mark H. Tuszynski, and Christina Chan     24.1 Current Challenges of Spinal Cord Injury: Inflammation, Axonal Regeneration, and Remyelination 525     24.1.1 Spinal Cord Injury 525     24.1.2 Potential of Tissue Engineering for Treating SCI 527     24.2 PEM Film   Cell Interactions and Adhesion 530     24.2.1 Polyelectrolyte Multilayers in Tissue Engineering 531     24.2.2 Components of the Multilayers 532     24.2.3 LbL as an Adhesive Coating for Neural Cell Attachment 533     24.2.4 Patterned Co-cultures Using LbL Technique 534     24.3 Controlled Drug Delivery for Nerve Regeneration 536     24.3.1 Drug Release from LbL Films 536     24.3.2 Local Drug Release for Neural Regeneration 537     24.4 Future Perspective 538     Acknowledgments 539     References 539     Index 547




نظرات کاربران