دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: T.G. Sitharam, Ravi Jakka, Sreevalsa Kolathayar سری: Springer Transactions in Civil and Environmental Engineering ISBN (شابک) : 9811614679, 9789811614675 ناشر: Springer سال نشر: 2021 تعداد صفحات: 567 [551] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 34 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Latest Developments in Geotechnical Earthquake Engineering and Soil Dynamics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آخرین تحولات در مهندسی ژئوتکنیک زلزله و دینامیک خاک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد مشارکتهای محققان و متخصصان مشهور جهان در زمینه مهندسی ژئوتکنیک را گرد هم میآورد. فصول این کتاب بر اساس سخنرانی های کلیدی و دعوت شده ارائه شده در هفتمین کنفرانس بین المللی پیشرفت های اخیر در مهندسی زلزله ژئوتکنیک و دینامیک خاک ارائه شده است. این کتاب پیشرفتهایی را در زمینه دینامیک خاک و مهندسی ژئوتکنیک زلزله ارائه میکند. تاکید زیادی بر اثبات ارتباط بین تحقیقات دانشگاهی و تمرین میدانی، با مثالهای فراوان، مطالعات موردی، بهترین شیوهها و بحثها در مورد طراحی مبتنی بر عملکرد است. این جلد به طور یکسان مورد توجه محققین، دانشگاهیان و متخصصان صنعت خواهد بود.
This volume brings together contributions from world renowned researchers and practitioners in the field of geotechnical engineering. The chapters of this book are based on the keynote and invited lectures delivered at the 7th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. The book presents advances in the field of soil dynamics and geotechnical earthquake engineering. A strong emphasis is placed on proving connections between academic research and field practice, with many examples, case studies, best practices, and discussions on performance-based design. This volume will be of interest to research scholars, academicians and industry professionals alike.
Preface Acknowledgements Contents Editors and Contributors 1 Single-Frequency Method for Computing Seismic Earth Pressures 1.1 Introduction 1.1.1 Mononobe–Okabe Method 1.1.2 Elastodynamic Continuum Solutions 1.1.3 Elastodynamic Winkler Solution 1.2 Equivalent Single-Frequency Solution Parameters 1.2.1 Transfer Functions for Frequency-Domain Solution 1.2.2 Earthquake Ground Motion Selection 1.2.3 Selection of Single-Frequency Parameters 1.3 Conclusions References 2 Three-Dimensional Centrifuge and Numerical Modeling of Underground Structures Subjected to Normal Faulting 2.1 Introduction 2.2 Problem Definition 2.3 Three-Dimensional Centrifuge and Numerical Modeling of Pile-Faulting and Tunnel-Faulting Interaction 2.3.1 Experimental Program and Setup 2.3.2 Model Pile and Model Tunnel 2.3.3 Model Preparation 2.3.4 Instrumentation and Centrifuge Model Test Procedure 2.3.5 Numerical Back-Analysis of Centrifuge Tests 2.3.6 Parametric Study of Pile-Fault-Distance and Tunnel Depth 2.4 Interpretation of Three-Dimensional Centrifuge Tests and Numerical Simulations 2.4.1 Ground Surface Settlements Adjacent to the Single Pile and Pile Group 2.4.2 Normal Fault Propagation in Sand and Fault-Pile Interaction 2.4.3 Pile Top Displacement and Tilting 2.4.4 Influence of Pile Location on Pile Responses: Numerical Parametric Study 2.4.5 Ground Surface Settlement Along the Longitudinal and Transverse Tunnel Directions 2.4.6 Propagation of Normal Fault and Fault-Tunnel Interaction 2.5 Summary and Conclusion Acknowledgements References 3 Liquefaction Mitigation Measures: A Historical Review 3.1 Introduction 3.2 Overview of Liquefaction-Induced Damage 3.3 Causative Mechanism of Liquefaction and Principles of Its Mitigation 3.4 Mitigation Measures for Newly Constructed Structures 3.4.1 Prevention of Liquefaction for New Structures 3.4.2 Allowing for Limited Extent of Liquefaction for New Structures 3.5 Mitigation Measures Under Existing Structures 3.5.1 Prevention of Liquefaction Under Existing Structures 3.5.2 Allowing for Limited Extent of Liquefaction Under Existing Structures 3.6 Mitigation Measures Under Existing Houses 3.6.1 Ground Water Lowering in Residential Land 3.6.2 Underground Grid Wall 3.7 Emerging Topics 3.8 Conclusion References 4 Liquefaction-Induced Pile Downdrag from Full-Scale Testing 4.1 Introduction 4.2 Driven Pile Downdrag Testing in Vancouver, Canada 4.3 Augercast Pile Downdrag Testing in Christchurch, New Zealand 4.4 Micropile Downdrag Testing in Mirabello, Italy 4.5 Driven and Bored Pile Downdrag Testing in Turrell, Arkansas, USA 4.6 Procedure for Determining the Neutral Plane for Piles in Liquefied Sand 4.7 Conclusions Acknowledgements References 5 Cyclic Resistance and Large Deformation Characteristics of Sands Under Sloping Ground Conditions: Insights from Large-Strain Torsional Simple Shear Tests 5.1 Introduction 5.1.1 Effects of Static Shear on Liquefaction Resistance of Sand 5.1.2 Large Deformation Properties of Liquefied Sand Within Sloping Ground 5.2 Large-Strain Hollow Cylindrical Torsional Shear Apparatus 5.2.1 Stress and Strains Definition 5.2.2 Experimental Evaluation of Membrane Resistance and Its Correction 5.3 Testing Material and Procedure 5.3.1 Stress Reversal and no-Stress Reversal Loading Conditions 5.4 Tests Results 5.4.1 Undrained Shear Strength 5.4.2 Failure Mechanisms and Development of Large Deformation 5.4.3 Cyclic Strength Against Large Deformation Accumulation 5.4.4 Strain Localization in Liquefied Sand Specimens 5.5 Summary and Conclusions Acknowledgements References 6 High-Speed Trains with Different Tracks on Layered Ground and Measures to Increase Critical Speed 6.1 Introduction 6.1.1 Early Studies on Moving Loads 6.1.2 Studies on High-Speed Trains 6.2 Simulation Models 6.2.1 Track Cases 6.2.2 Computational Tools 6.2.3 Green’s Functions for Layered Viscoelastic Soil 6.2.4 Green’s Functions for Piles in Layered Soil 6.3 Soil and Load Data and Simulation for Base Case 6.4 Measures to Increase Critical Speed 6.4.1 Track Stiffening 6.4.2 Ground Improvement and Soil Replacement 6.4.3 Piled Track 6.5 Conclusion References 7 Numerical Simulation of Coir Geotextile Reinforced Soil Under Cyclic Loading 7.1 Introduction 7.2 Numerical Model for Coir Geotextile Reinforced Soil Under Cyclic Loading 7.3 Results and Discussion 7.3.1 Calibration of FE Model 7.3.2 Behavior of Coir Geotextile Reinforced Soil During Cyclic Loading 7.3.3 Effect of Cyclic Stress on the Settlement of Coir Geotextile Reinforced Soil 7.3.4 Spatial Distribution of Stresses on Soil and Reinforcement During Cyclic Loading 7.4 Conclusions Acknowledgements References 8 Assessing the Effect of Aging on Soil Liquefaction Resistance 8.1 Introduction 8.2 Holocene Liquefaction in Pleistocene Deposits 8.3 Correcting CRR for Diagenesis 8.3.1 Time-KDR Relationships 8.3.2 MEVR-KDR Relationships 8.4 Conclusions References 9 Uncertainties in Small-Strain Damping Ratio Evaluation and Their Influence on Seismic Ground Response Analyses 9.1 Introduction 9.2 Sources of Uncertainties in GRAs 9.3 Laboratory Tests 9.3.1 RC Test 9.3.2 CTS and C(DS)DSS Tests 9.3.3 Frequency-Dependent Soil Behavior 9.4 In Situ Tests 9.4.1 Geophysical Tests 9.4.2 Back-Analysis of Downhole Arrays 9.5 Literature Approaches to Account for Wave Scattering Effects 9.6 Influence of D0 Correction in GRAs 9.6.1 Stochastic Database of GRAs 9.6.2 The Roccafluvione Case Study 9.7 Final Remarks Acknowledgements References 10 Large Deformation Analysis of Coseismic Landslide Using Material Point Method 10.1 Introduction 10.2 Material Point Method 10.3 Numerical Simulation of Dynamic Slope Failure 10.3.1 Model Setup 10.3.2 Dynamic Slope Failure Process 10.3.3 Effects of Residual Soil Strength 10.4 Conclusions and Discussions Acknowledgements References 11 The State of Art on Equivalent State Theory for Silty Sands 11.1 Introduction 11.2 Equivalent State Theory (EST) 11.2.1 Equivalent Granular Void Ratio, e* 11.2.2 Discrete Element Method (DEM) Evidence for Active/Inactive Fine Particles and Their Contribution 11.2.3 Estimation of b 11.2.4 Philosophy of the Equivalent State Theory and a Few Experimental Databases for Evaluation 11.2.5 Small Strain Stiffness Within the Equivalent State Theory 11.2.6 Equivalent Granular Critical State Line for the Equivalent State Theory 11.2.7 The Equivalent Granular State Parameter for the Equivalent State Theory 11.2.8 Static Liquefaction/Instability Within the Equivalent State Theory 11.2.9 Cyclic Liquefaction Within the Equivalent State Theory 11.3 Constitutive Models Within the Equivalent State Theory 11.4 Conclusions Acknowledgements References 12 Forensic Evaluation of Long-Distance Flow in Gently Sloped Ground During the 2018 Sulawesi Earthquake, Indonesia 12.1 Introduction 12.2 Geological and Seismological Characteristics of Central Sulawesi Region 12.3 Earthquake-Induced Flow-Slides and the Resulting Damage 12.3.1 Flow-Slides at Jono Oge 12.3.2 Flow-Slide at Sibalaya 12.3.3 Flow-Slide at Balaroa 12.3.4 Flow-Slides at Petobo 12.4 Probable Flow-Slide Mechanism 12.5 Concluding Remarks Acknowledgements References 13 Empirical Predictions of Fourier Amplitude and Phase Spectra Including Local Site Effects for Simulation of Design Accelerograms in Western Himalayan Region 13.1 Introduction 13.2 Study Region and Strong Motion Database 13.3 Prediction Relations for Fourier Amplitude Spectra 13.3.1 Estimation of Regression Coefficients 13.3.2 Prediction Model and Statistics of Residues 13.3.3 Examples of Predicted Fourier Spectra 13.3.4 Comparisons Between Predicted and Real Fourier Spectra 13.4 Prediction Methodology for Fourier Phase Spectra 13.4.1 Prediction of Group Velocity Dispersion Curves 13.4.2 Simulation of Fourier Phase Spectra 13.5 Generation of Design Accelerograms 13.6 Discussion and Conclusions References 14 Regional–Local Hybrid Seismic Hazard and Disaster Modeling of the Five Tectonic Province Ensemble Consisting of Westcentral Himalaya to Northeast India 14.1 Introduction 14.2 Second-Order Seismic Hazard Assessment 14.2.1 Smoothened Gridded Seismicity Model 14.2.2 Probabilistic Seismic Hazard Analysis 14.3 Site Classification 14.3.1 Regional Site Classification 14.3.1.1 Geology 14.3.1.2 Geomorphology 14.3.1.3 Landform 14.4 Site Characterization 14.4.1 In-Situ Measurements 14.4.2 Surface Measurements 14.4.3 Generation of Site- and Lithology-Specific, Depth-Dependent Empirical Relations Between SPT-N and Vs 14.5 Site Amplification 14.5.1 Ground Motion Simulation 14.5.2 Site Response 14.6 Induced Hazards 14.6.1 Liquefaction 14.6.1.1 Factor of Safety Assessment 14.6.1.2 Cyclic Resistance Ratio (CRR) 14.6.1.3 Cyclic Stress Ratio (CSR) 14.6.1.4 Liquefaction Potential Index (LPI) 14.6.2 Landslides 14.6.2.1 Slope Stability Analysis Analysis of 6th Mile Landslide 14.7 Urban Seismic Hazard Impact Assessment 14.7.1 Capacity and Fragility Curves 14.8 Structural Damage and Casualty Scenario for the City of Amristar, Agra, Kolkata, Dhaka, Gangtok and Guwahati 14.8.1 Damage Scenario 14.8.2 Human Casualty Scenario 14.9 Conclusions Acknowledgments References 15 Geosynthetics in Retaining Walls Subjected to Seismic Shaking 15.1 Introduction 15.2 Shaking Table and Instrumentation 15.3 Model Studies on Retaining Walls 15.3.1 Wrap-Faced Walls 15.3.2 Rigid-Faced Retaining Walls 15.3.3 Segmental Retaining Walls 15.3.4 Geocell Retaining Walls 15.4 Conclusions References 16 Studies on Modeling of Dynamic Compaction in a Geocentrifuge 16.1 Introduction 16.2 Scaling Considerations of DC 16.3 Design Details of Actuator 16.4 Salient Features of Developed Actuator 16.5 Test Procedure and Model Materials 16.6 Results and Discussion 16.6.1 Crater Profiles Induced by DC 16.6.2 Displacement Contours 16.6.3 Volumetric Soil Strains 16.6.4 Pore Water Pressure Developments 16.6.5 Ground Vibrations Associated with DC 16.7 Conclusions References 17 A State of Art: Seismic Soil–Structure Interaction for Nuclear Power Plants 17.1 Introduction 17.2 Background of Study 17.3 Objectives, Approach and Effects of SSI 17.4 Geological Background of Nuclear Power Plants in India 17.5 Review of Numerical Modeling of NPPs 17.6 Recent Advances in SSI 17.6.1 Modeling of Boundary 17.6.2 Nonlinearity of Soil 17.6.3 SSI in Liquefiable Soil 17.7 Software Package for NPP Modeling 17.7.1 SASSI 17.7.2 LS-DYNA 17.7.3 ABAQUS 17.8 Summary and Conclusions Acknowledgements References 18 Seismic Stability of Slopes Reinforced with Micropiles—A Numerical Study 18.1 Introduction 18.2 Problem Definition 18.3 Assumptions 18.4 Methodology 18.4.1 Seismic Accelerations 18.4.2 Stability Analysis with Vertical Micropiles 18.4.3 Stability Analysis with Inclined Micropiles 18.5 Results and Discussion 18.6 Comparison 18.7 Conclusions References 19 Deformation Modulus Characteristics of Cyclically Loaded Granular Earth Bed for High-Speed Trains 19.1 Introduction 19.2 Methodology 19.3 Materials and Preparation 19.4 Results and Discussion 19.5 Conclusions References 20 Disturbance in Soil Structure Due to Post-cyclic Recompression 20.1 Background 20.2 Methodology 20.3 Results and Discussion 20.3.1 Post-Cyclic Recompression 20.3.2 Post-Cyclic Undrained Monotonic Strength 20.4 Conclusion References 21 Application of Soft Computing in Geotechnical Earthquake Engineering 21.1 Introduction 21.2 Liquefaction 21.3 Lateral Spreading 21.4 Ground Motion 21.5 Slope Stability 21.6 Other Fields of Geotechnical Earthquake Engineering 21.7 Conclusion References 22 Resilient Behavior of Stabilized Reclaimed Bases 22.1 Introduction and Background 22.1.1 Current Design Aspects 22.2 Materials and Methods 22.2.1 Materials 22.2.2 Test Methods 22.2.3 Testing Program 22.3 Results and Discussion 22.3.1 Mr Studies 22.4 Design of Flexible Pavements with Stabilized Bases 22.5 Conclusions References 23 Computing Seismic Displacements of Cantilever Retaining Wall Using Double Wedge Model 23.1 Introduction 23.2 Double Wedge Model for Sliding Displacements 23.3 Finite Element Model for Computing Rotational Displacements 23.4 Design of Cantilever Retaining Walls with Shear Key 23.5 Case Study: Shake Table Tests at the University of Bristol 23.6 Conclusion References 24 Importance of Site-Specific Observations at Various Stages of Seismic Microzonation Practices 24.1 Introduction 24.2 Identification of Seismic Sources 24.3 Seismic Source Characterization 24.4 Declustering of EQ Catalogue 24.5 Effect of Input Motion Characteristics While Assessing Local Site Effect 24.6 Assessment of Liquefaction Potential 24.7 Conclusion References 25 Influence of Bio- and Nano-materials on Dynamic Characterization of Soils 25.1 Introduction 25.2 Materials and Methods 25.2.1 Materials 25.2.2 Experimental Program 25.3 Results and Discussions 25.3.1 Effect of Biopolymer Treatment on Silty Sand 25.3.2 Effect of Nano-material on Soft Clay 25.4 Conclusions References 26 Dynamic Characterization of Lunar Soil Simulant (LSS-ISAC-1) for Moonquake Analysis 26.1 Introduction 26.2 Moonquakes 26.3 Geotechnical Properties of Lunar Soil Simulant 26.4 Dynamic Properties 26.4.1 Cyclic Triaxial Test 26.4.2 Bender Element Test 26.5 Results and Discussions 26.6 Conclusions Acknowledgements References 27 Dynamic Response of Monopile Supported Offshore Wind Turbine in Liquefied Soil 27.1 Introduction 27.2 Methodology 27.2.1 Numerical Model of OWT 27.2.2 Method of Analysis 27.3 Loads on OWT 27.3.1 Wind and Wave Load 27.3.2 Seismic Load 27.4 Parameters 27.5 Results and Discussion 27.5.1 Depth of Liquefaction 27.5.2 Responses of OWT 27.6 Concluding Remarks References 28 Nonlinear Ground Response Analysis: A Case Study of Amingaon, North Guwahati, Assam 28.1 Introduction 28.2 Methodology of GRA 28.3 Study Area and Site Characterization 28.4 Strong Motion 28.5 Results and Discussions 28.6 Conclusions References