دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Helmut H. Telle, Ángel González Ureña سری: Series in Optics and Optoelectronics ISBN (شابک) : 1466588225, 9781466588226 ناشر: CRC Press سال نشر: 2018 تعداد صفحات: 751 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 156 مگابایت
کلمات کلیدی مربوط به کتاب طیف سنجی لیزری و تصویربرداری با لیزر: مقدمه: مهندسی، هوافضا، خودرو، مهندسی زیستی، شیمی، عمران و محیط زیست، مدل سازی کامپیوتری، ساخت و ساز، طراحی، برق و الکترونیک، تولید و استخراج انرژی، سیستم های صنعتی، ساخت و عملیات، مهندسی دریایی، فناوری مواد و مواد، علوم مواد و مواد مرجع، مخابرات و حسگرها، مهندسی و حمل و نقل، شیمی، آلکالوئیدها، تحلیلی، بیوشیمی، فیزیک شیمیایی، کروماتوگرافی، بالینی، کریستالوگرافی، الکتروشیمی، عمومی و ارجاع
در صورت تبدیل فایل کتاب Laser Spectroscopy and Laser Imaging: An Introduction به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طیف سنجی لیزری و تصویربرداری با لیزر: مقدمه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
\"کتابی بسیار ارزشمند برای دانشجویان کارشناسی ارشد و محققین
در زمینه طیف سنجی لیزری که می توانم آن را کاملاً توصیه
کنم\"
—Wolfgang Demtroder, دانشگاه فناوری
کایزرسلاوترن< /I>
چگونه می توان تصویری منسجم از این زمینه با توجه به تمام تکنیک های موجود امروز ارائه داد؟ نویسندگان این کار دلهره آور را در این متن تاثیرگذار و پیشگامانه بر عهده گرفته اند. خوانندگان از مرور کلی مفاهیم اساسی با تمرکز بر کاربردهای علمی عملی و واقعی تجزیه و تحلیل و تصویربرداری طیفسنجی لیزری بهره خواهند برد. فصلها از ساختاری منسجم پیروی میکنند که با خلاصهای مختصر از اصول و مفاهیم کلیدی شروع میشود، سپس مروری بر کاربردها، مزایا و مشکلات و در نهایت بحث مختصری در مورد پیشرفتهای اساسی و پیشرفتهای جاری میشود. مثالهای مورد استفاده در این متن از فیزیک و شیمی تا علوم محیطی، زیستشناسی و پزشکی را شامل میشود.
این کتاب برای هر کسی که در علوم فیزیکی، زیستشناسی یا پزشکی به دنبال مقدمهای بر روشهای طیفسنجی و تصویربرداری لیزری.
Helmut H. Telle استاد تمام در Instituto Pluridisciplinar، Universidad Complutense de Madrid، اسپانیا است.
< P>Angel González Ureña رئیس بخش پرتوهای مولکولی و لیزر، Instituto Pluridisciplinar، Universidad Complutense de Madrid، اسپانیا است.
"a very valuable book for graduate students and researchers
in the field of Laser Spectroscopy, which I can fully
recommend"
―Wolfgang Demtröder, Kaiserslautern University of
Technology
How would it be possible to provide a coherent picture of this field given all the techniques available today? The authors have taken on this daunting task in this impressive, groundbreaking text. Readers will benefit from the broad overview of basic concepts, focusing on practical scientific and real-life applications of laser spectroscopic analysis and imaging. Chapters follow a consistent structure, beginning with a succinct summary of key principles and concepts, followed by an overview of applications, advantages and pitfalls, and finally a brief discussion of seminal advances and current developments. The examples used in this text span physics and chemistry to environmental science, biology, and medicine.
This book is appropriate for anyone in the physical sciences, biology, or medicine looking for an introduction to laser spectroscopic and imaging methodologies.
Helmut H. Telle is a full professor at the Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain.
Ángel González Ureña is head of the Department of Molecular Beams and Lasers, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain.
Cover Half Title Title Page Copyright Page Contents Detailed Contents Series Preface Preface Acknowledgments Authors Chapter 1: Introduction 1.1 Lasers and their impact on spectroscopy and imaging 1.1.1 Laser properties of importance to spectroscopy 1.1.2 Concepts of laser spectroscopy and imaging 1.2 Organization of the book 1.2.1 Introduction to photon–matter interaction processes, laser sources, and detection methodologies 1.2.2 Spectroscopic techniques and their applications 1.2.3 Laser-spectroscopic imaging Chapter 2: Interaction of Light with Matter 2.1 Absorption and emission of radiation 2.1.1 Einstein coefficients and transition probabilities 2.1.2 Quantitative description of light absorption—The Beer–Lambert law 2.2 Fluorescence and phosphorescence 2.3 Light scattering 2.3.1 Rayleigh scattering 2.3.2 Mie scattering 2.3.3 Reflection and refraction 2.4 Light scattering: Inelastic processes 2.4.1 Brillouin scattering 2.4.2 Raman scattering 2.5 Breakthroughs and the cutting edge 2.5.1 Breakthrough: Color in prehistoric times 2.5.2 At the cutting edge: Single-photon spectroscopy of a single molecule Chapter 3: The Basics of Lasers 3.1 Framework for laser action 3.1.1 Rate equations 3.1.2 Population inversion in the steady-state limit 3.1.3 Laser cavities 3.1.4 Laser gain 3.1.5 Cavity dynamics and the evolution of laser photons 3.2 Laser cavities: Spatial field distributions and laser beams 3.2.1 Transverse mode structure 3.2.2 Gaussian beams and their propagation 3.3 Laser cavities: Mode frequencies, line shapes, and spectra 3.3.1 Frequency mode structure 3.3.2 Line profiles and widths 3.3.3 Laser linewidth, gain bandwidth, and laser spectrum 3.3.4 Single-mode laser operation 3.4 Laser cavities: Temporal characteristics 3.4.1 CW operation and laser output modulation 3.4.2 Pulsed laser operation 3.4.3 Mode locking: Generation of ultrashort picosecond and femtosecond pulses 3.4.4 Group delay dispersion: Shortening and lengthening ultrashort (chirped) pulses 3.5 Polarization and coherence properties of lasers and laser beams 3.5.1 Laser polarization 3.5.2 Tailoring the polarization of a laser beam: Linear, circular, and radial polarization 3.5.3 Coherence 3.6 Breakthroughs and the cutting edge 3.6.1 Breakthrough: Theoretical description of modes in a laser cavity 3.6.2 At the cutting edge: Steady-state ab initio laser theory for complex gain media Chapter 4: Laser Sources Based on Gaseous, Liquid, or Solid-State Active Media 4.1 Parameters of importance for laser spectroscopy and laser imaging 4.2 Gas laser sources (mostly fixed frequency) 4.3 Dye lasers (tunable frequency) 4.4 Solid-state laser sources (fixed and tunable frequency) 4.4.1 Nd:YAG lasers 4.4.2 Ti:sapphire lasers 4.5 Fiber laser sources 4.5.1 Wavelength selection and tunability 4.5.2 Q-Switched and mode-locked pulse generation 4.5.3 Supercontinuum sources 4.5.4 Fiber lasers versus bulk solid-state lasers 4.6 Breakthroughs and the cutting edge 4.6.1 Breakthrough: Ti:sapphire lasers 4.6.2 At the cutting edge: OFCs for high-resolution spectroscopy Chapter 5: Laser Sources Based on Semiconductor Media and Nonlinear Optic Phenomena 5.1 Semiconductor laser sources 5.1.1 Principles of laser diodes 5.1.2 Laser diode resonators 5.1.3 Monolithic diode laser devices 5.1.4 External cavity diode lasers (ECDL) 5.1.5 Optically pumped ECDLs 5.2 Quantum cascade lasers 5.3 Laser sources based on NLO: Sum and difference frequency conversion 5.3.1 Basic principles of frequency conversion in nonlinear media 5.3.2 Phase matching 5.3.3 Selected nonlinear crystals and their common uses 5.3.4 Conversion efficiency and ways to increase it 5.3.5 Outside- and inside-cavity NLO-crystal configurations 5.4 Laser sources based on NLO: Optical parametric amplification (down-conversion) 5.4.1 OPG and OPOs 5.5 Remarks on laser safety 5.5.1 How do laser wavelengths affect our eyes? 5.5.2 Maximum permissible exposure and accessible emission limit 5.5.3 Laser classification 5.5.4 Laser safety eyewear 5.6 Breakthroughs and the cutting edge 5.6.1 Breakthrough: Semiconductor laser diodes 5.6.2 Breakthrough: Widely tunable QCLs 5.6.3 At the cutting edge: HHG and attosecond pulses Chapter 6: Common Spectroscopic and Imaging Detection Techniques 6.1 Spectral and image information: How to recover them from experimental data 6.1.1 Spectral information and its retrieval from photon events 6.1.2 Image information and its retrieval from photon events 6.1.3 Spectral/image information and its retrieval from charged-particle events 6.2 Photon detection: Single element devices 6.2.1 PDs and their principal modes of operation 6.2.2 Types of PDs 6.2.3 Important operating parameters of PDs 6.2.4 Photomultiplier tubes 6.2.5 Important operating parameters of photomultipliers 6.3 Photon detection: Multielement array devices 6.3.1 PDA sensors 6.3.2 CCD and CMOS array sensors 6.3.3 On-chip amplified image sensors: EMCCD and e-APD devices 6.3.4 Externally amplified and gated image sensors: ICCD devices 6.4 Charged particle detection 6.4.1 Direct charge detectors—Faraday cup 6.4.2 Single-element amplifying detectors—Channeltron 6.4.3 Multiple-element amplifying detectors—MCP 6.5 Detection by indirect phenomena 6.5.1 Photothermal/photoacoustic spectroscopy 6.5.2 Photoacoustic imaging 6.5.3 Photoacoustic Raman (stimulated Raman) scattering 6.6 Signals, noise, and signal recovery methodologies 6.6.1 Signals and noise 6.6.2 Low-intensity “continuous” signals—Lock-in methods 6.6.3 Low-intensity pulsed signals—Gating methods 6.7 Breakthroughs and the cutting edge 6.7.1 Breakthrough: First transistorized lock-in amplifier 6.7.2 Breakthrough: First demonstration of CCD imaging 6.7.3 At the cutting edge: Nanoscale light detectors and imaging Chapter 7: Absorption Spectroscopy and Its Implementation 7.1 Concepts of linear absorption spectroscopy 7.1.1 Absorption coefficient and cross section 7.1.2 Spectral line profiles 7.2 Line broadening and line shapes in absorption spectroscopy 7.2.1 Natural broadening 7.2.2 Collisional or pressure broadening 7.2.3 Doppler broadening 7.2.4 Combined line profiles—The Voigt convolution profile 7.2.5 Other effects impacting on linewidth 7.3 Nonlinear absorption spectroscopy 7.3.1 Saturation spectroscopy 7.3.2 Polarization spectroscopy 7.4 Multiphoton absorption processes 7.4.1 Two-photon absorption spectroscopy 7.4.2 Doppler-free TPA 7.4.3 Multiphoton absorption and molecular dissociation 7.5 Key parameters and experimental methodologies in absorption spectroscopy 7.5.1 Wavelength regimes 7.5.2 Spectral resolving power 7.5.3 Experimental methodologies 7.6 Breakthroughs and the cutting edge 7.6.1 Breakthrough: Absorption spectroscopy utilizing SC sources 7.6.2 At the cutting edge: Precision laser spectroscopy of hydrogen: Challenging QED? Chapter 8: Selected Applications of Absorption Spectroscopy 8.1 Basic methodologies based on broadband sources 8.1.1 BB-AS utilizing SC sources 8.1.2 Minimum detectable concentrations and LODs 8.2 Absorption spectroscopy using frequency combs 8.2.1 Basic concepts of frequency combs 8.2.2 Measuring and controlling frequency-comb parameters 8.2.3 Spectroscopic metrology based on frequency combs 8.2.4 Direct frequency comb spectroscopy—DFCS 8.3 Absorption spectroscopy using tunable diode and quantum-cascade laser (QCL) sources 8.3.1 Tunable diode laser absorption spectroscopy 8.3.2 QCL in absorption spectroscopy 8.3.3 cw-QCL absorption spectroscopy 8.3.4 EC-QCL absorption spectroscopy 8.3.5 p-QCL absorption spectroscopy 8.4 Cavity-enhancement techniques 8.4.1 Intracavity laser absorption spectroscopy 8.4.2 Cavity ring-down spectroscopy 8.5 Terahertz spectroscopy 8.5.1 Basic features and experimental methodologies 8.5.2 Applications of terahertz spectroscopy in molecular structure and chemical analysis 8.5.3 Applications of terahertz spectroscopy in biology and medicine 8.6 Photoacoustic and photothermal spectroscopy with lasers 8.6.1 Quartz-enhanced PAS 8.7 Breakthroughs and the cutting edge 8.7.1 Breakthrough: Cavity-enhanced absorption spectroscopy utilizing SC sources 8.7.2 At the cutting edge: CRDS of optically trapped aerosol particles Chapter 9: Fluorescence Spectroscopy and Its Implementation 9.1 Fundamental Aspects of Fluorescence Emission 9.1.1 The concept of fluorophores 9.1.2 Principal processes in excited-state fluorescence 9.2 Structure of Fluorescence Spectra 9.3 Radiative Lifetimes and Quantum Yields 9.4 Quenching, Transfer, and Delay of Fluorescence 9.4.1 Fluorescence quenching and the Stern–Volmer law 9.4.2 Förster resonance energy transfer 9.4.3 Delayed fluorescence 9.5 Fluorescence Polarization and Anisotropy 9.6 Single-Molecule Fluorescence 9.7 Breakthroughs and the cutting edge 9.7.1 Breakthrough: Coining the term “fluorescence” 9.7.2 Breakthrough: First LIF spectroscopy 9.7.3 At the cutting edge: Laser-stimulated fluorescence on the macroscopic level—Fluorescing fossils Chapter 10: Selected Applications of Laser-Induced Fluorescence Spectroscopy 10.1 LIF measurement instrumentation in spectrofluorimetry 10.2 Steady-state laser-induced fluorescence spectroscopy 10.2.1 LIF in gas-phase molecular spectroscopy 10.2.2 LIF applied to reaction dynamics 10.2.3 LIF in analytical chemistry 10.2.4 LIF for medical diagnosis 10.3 Time-resolved LIF spectroscopy 10.3.1 Measurements of lifetimes in the FD 10.3.2 Measurements of lifetimes in the time domain: TCSPC 10.3.3 LIF applied to femtosecond transition-state spectroscopy 10.4 LIF spectroscopy at the small scale 10.4.1 LIF microscopy 10.4.2 Fluorescence-correlation spectroscopy 10.5 Breakthroughs and the cutting edge 10.5.1 Breakthrough: First LIF measurements to resolve the internal state distribution of reaction products 10.5.2 At the cutting edge: FRET measurement of gaseous ionized proteins Chapter 11: Raman Spectroscopy and Its Implementation 11.1 Fundamentals of the Raman process: Excitation and detection 11.2 The structure of Raman spectra 11.2.1 Stokes and anti-Stokes Raman scattering 11.2.2 “Pure” rotational Raman spectra 11.2.3 Ro-vibrational Raman bands 11.2.4 Hot bands, overtones, and combination bands 11.2.5 Peculiarities in the Raman spectra from liquids and solid samples 11.2.6 Polarization effects in Raman spectra 11.3 Basic experimental implementations: Key issues on excitation and detection 11.3.1 Laser excitation sources 11.3.2 Delivery of excitation laser light 11.3.3 Samples and their incorporation into the overall setup 11.3.4 Raman light collection 11.3.5 Wavelength separation/selection devices 11.3.6 Photon detectors 11.3.7 Signal acquisition and data analysis equipment 11.4 Raman spectroscopy and its variants 11.4.1 Spontaneous Raman spectroscopy variants 11.4.2 “Enhanced” Raman techniques 11.4.3 Nonlinear Raman techniques 11.5 Advantages and drawbacks, and comparison to other “vibrational“ analysis techniques 11.5.1 The problem of fluorescence 11.5.2 Advantages and drawbacks of Raman spectroscopy, and comparison to (IR) absorption spectroscopy 11.6 Breakthroughs and the cutting edge 11.6.1 Breakthrough: UV Raman spectroscopy 11.6.2 At the cutting edge: Atomic properties probed by Raman spectroscopy Chapter 12: Linear Raman Spectroscopy 12.1 The framework for qualitative and quantitative Raman spectroscopy 12.1.1 Determining and calibrating the Raman excitation laser wavelength 12.1.2 Calibrating the spectrometer wavelength and Raman shift scales 12.1.3 Intensity calibration for quantitative Raman spectra 12.1.4 Quantification of molecular constituents in a sample 12.2 Measuring Molecular Properties Using Linear Raman Spectroscopy 12.2.1 Raman scattering of polarized light waves 12.2.2 Depolarization ratios Totally symmetric vibrational modes Non-totally symmetric vibrational modes 12.2.3 Measuring depolarization ratio 12.2.4 Raman optical activity 12.3 Raman Spectroscopy of Gaseous Samples 12.3.1 Spectroscopy of rotational and vibrational features 12.3.2 Analytical Raman spectroscopy and process monitoring 12.3.3 Remote sensing using Raman spectroscopy—The Raman LIDAR 12.4 Raman Spectroscopy of Liquid Samples 12.4.1 Spectroscopic aspects of Raman spectroscopy in liquids 12.4.2 Analytical aspects of Raman spectroscopy in liquids 12.4.3 “Super-resolution” Raman spectroscopy 12.5 Raman Spectroscopy of Solid Samples 12.5.1 Spectroscopic and structural information for “ordered” materials 12.5.2 Analytical and diagnostic applications for “soft tissue” samples 12.6 Breakthroughs and the Cutting Edge 12.6.1 Breakthrough: Raman spectroscopy in the terahertz range 12.6.2 At the cutting edge: Raman spectroscopy in the search for life on Mars Chapter 13: Enhancement Techniques in Raman Spectroscopy 13.1 Waveguide-Enhanced Raman Spectroscopy 13.1.1 Raman spectroscopy using liquid-core waveguides (LC-OF) 13.1.2 Hollow-core metal-lined waveguides 13.1.3 Hollow-core photonic-crystal fibers 13.1.4 Measures to reduce fluorescence contributions in backward Raman setups 13.2 Cavity-Enhanced Raman Spectroscopy 13.3 Resonance Raman Spectroscopy 13.3.1 Basic concepts of resonance Raman scattering 13.3.2 Applications of RRS to probing of excited electronic state quantum levels 13.3.3 Applications of RRS to obtain structural information for large molecules 13.3.4 Applications of RRS to analytical problems 13.4 Breakthroughs and The Cutting Edge 13.4.1 Breakthrough: First RRS of heme-proteins 13.4.2 At the cutting edge: Low-concentration gas sensors based on HC-PCFs Chapter 14: Nonlinear Raman Spectroscopy 14.1 Basic Concepts and Classification of Nonlinear Raman Responses 14.1.1 Incoherent vs. coherent signal character 14.1.2 Spontaneous vs. stimulated scattering processes Stimulated Raman resonance Stimulated detection mode 14.1.3 Homodyne vs. heterodyne detection 14.2 Nonlinear Interaction with Surfaces: SERS 14.2.1 Trying to understand SERS spectra 14.2.2 Single spherical nanoparticle model for SERS 14.2.3 E4-enhancement in the Raman response 14.2.4 Wavelength dependence of the E4-enhancement 14.2.5 Distance dependence of the E4-enhancement 14.2.6 Chemical enhancement in the Raman response 14.2.7 SERS substrates 14.3 Variants of SERS—Toward Ultralow Concentration and Ultrahigh Spatial Resolution RS 14.3.1 Preconcentration of ultralow concentration samples—SLIPSERS 14.3.2 Single-molecule SERS 14.3.3 Principles of tip-enhanced RS 14.4 HYPER-RAMAN SPECTROSCOPY: HRS 14.5 Stimulated Raman Scattering and Spectroscopy: SRS 14.5.1 SRS using tunable probe laser sources 14.5.2 SRS using ps- and fs-laser sources (fs-SRS) 14.6 Coherent Anti-Stokes Raman Scattering and Spectroscopy: CARS 14.6.1 Basic framework for CARS 14.6.2 Tuned single-mode and ns-pulse CARS 14.6.3 Broadband fs-pulse CARS and time-resolved CARS 14.6.4 Spontaneous, stimulated, and coherent anti-Stokes Raman spectroscopies in comparison 14.7 Breakthroughs and the cutting edge 14.7.1 Breakthrough: SERS using silver films over nanospheres (AgFON) 14.7.2 Breakthrough: Toward “pen-on-paper” SERS substrates 14.7.3 At the cutting edge: Seeing a single molecule vibrate utilizing tr-CARS Chapter 15: Laser-Induced Breakdown Spectroscopy 15.1 Method of LIBS 15.1.1 Basic concepts: Plasma generation and characterization 15.1.2 Basic experimental setups and ranging approaches 15.1.3 Double-pulse excitation 15.1.4 Portable, remote, and standoff LIBS 15.1.5 Femtosecond LIBS 15.2 Qualitative and Quantitative LIBS Analyses 15.3 Selected LIBS Applications 15.3.1 Application of LIBS to liquids and samples submerged in liquids 15.3.2 Detection of hazardous substances by ST-LIBS 15.3.3 Space applications 15.3.4 Industrial applications 15.4 Breakthroughs anD the cutting edge 15.4.1 Breakthrough: Quantitative LIBS analysis using nanosecond- and femtosecond-pulse lasers 15.4.2 At the cutting edge: Elemental chemical mapping of biological samples using LIBS Chapter 16: Laser Ionization Techniques 16.1 Basic Concepts of REMPI 16.1.1 Quantitative description of REMPI in the framework of rate equations 16.1.2 REMPI signal intensity 16.1.3 Selection rules for the ionization step in REMPI 16.1.4 Conceptual experimental REMPI setups 16.2 Applications of REMPI in Molecular Spectroscopy and to Chemical Interaction Processes 16.2.1 Molecular spectroscopy utilizing REMPI Spectroscopy of the molecule nitric oxide (NO) Spectroscopy of the radicals calcium hydride/calcium deuteride (CaH/CaD) 16.2.2 Investigation of chemical reactions utilizing REMPI Hydrogen exchange reaction H + D2 ! HD + D Excited-state chemical reaction O*(1D) + N2O Doppler-selected REMPI-ToF 16.2.3 Photodissociation studies utilizing REMPI Photodissociation of N2O 16.2.4 REMPI spectroscopy of catalytic reactions Recombination of D2 at the surface of Pd(100) 16.3 REMPI and Analytical Chemistry 16.3.1 REMPI spectroscopy with isotopologue and isomeric selectivity 16.3.2 REMPI spectroscopy in trace and environmental analyses REMPI of NO in exhaled breath REMPI of polyaromatic hydrocarbons 16.3.3 Following biological processes by using REMPI spectroscopy 16.4 ZEKE Spectroscopy 16.4.1 Methodology of ZEKE spectroscopy 16.4.2 Measurement modality of pulsed-field ionization: PFI-ZEKE 16.4.3 Examples of high-resolution ZEKE spectroscopy Quasi-bound rotational levels of H2+ Line intensities in the vibrational progressions of the ZEKE spectra: The I2 molecule Low-frequency modes: van der Waals complexes and internal rotation of molecular cations 16.4.4 MATI spectroscopy 16.5 Technique of H Atom Rydberg Tagging 16.5.1 Reaction H + D2 ! HD + D 16.5.2 Reaction of F atoms with H2 molecules: Dynamical resonances 16.5.3 Four-atom reaction OH + D2 ! HOD + D 16.6 Breakthroughs and the cutting edge 16.6.1 Breakthrough: First state-resolved REMPI spectrum of a molecule 16.6.2 At the cutting edge: Ultrahigh sensitivity PAH analysis using GC-APLI-MS Chapter 17: Basic Concepts of Laser Imaging 17.1 Concepts of Imaging with Laser Light 17.1.1 Laser illumination concepts: Point, line, and sheet patterns in transparent gas and liquid samples 17.1.2 Laser illumination concepts: Point, line, and sheet patterns in condensed-phase samples 17.1.3 Image sensing and recording concepts 17.1.4 Multispectral and hyperspectral recording 17.2 Image Generation, Image Sampling, and Image Reconstruction 17.2.1 Sampling and its relation to signal digitization 17.2.2 Sampling and its relation to spatial resolution 17.2.3 Sampling and its relation to spectral resolution 17.2.4 Image reconstruction 17.3 Superresolution Imaging 17.3.1 Sub-Abbé limit localization and “classical” superresolution strategies 17.3.2 Imaging and reconstruction strategies for structured illumination methods 17.3.3 Imaging and reconstruction strategies for local-saturation methods 17.3.4 Imaging and reconstruction strategies for single-molecule response methods 17.4 Breakthroughs and the cutting edge 17.4.1 Breakthrough: Airy-scan detection in confocal laser microscopy 17.4.2 At the cutting edge: Single-pixel detector multispectral imaging Chapter 18: Laser-Induced Fluorescence Imaging 18.1 Two- and three-dimensional planar laser-Induced fluorescence imaging 18.1.1 PLIF imaging in gaseous samples Basic theory and experimental setup 18.1.2 Selected examples for PLIF of gaseous samples OH imaging in a turbulent nonpremixed flame Kerosene combustion in multipoint injectors Gelled fuel droplet combustion PLIF imaging in catalysis 18.1.3 PLIF imaging of biological tissues 18.2 Fluorescence Molecular Tomography 18.2.1 Basic concepts 18.2.2 Examples of FMT 18.3 Superresolution Microscopy 18.3.1 STED microscopy 18.3.2 RESOLFT microscopy 18.3.3 SIM and SSIM 18.4 Superresolution Fluorescence Microscopy based on Single-Molecule Imaging 18.4.1 Basic principles of STORM/PALM 18.4.2 Fluorophore localization 18.4.3 Factors affecting the resolution in STORM/PALM imaging 18.4.4 Toward 3D superresolution imaging: Interferometric PALM 18.5 Breakthroughs and The Cutting Edge 18.5.1 Breakthrough: GFP as a marker for gene expression 18.5.2 At the cutting edge Chapter 19: Raman Imaging and Microscopy 19.1 Raman Microscopic Imaging 19.1.1 Concepts of Raman imaging and microscopy 19.1.2 Confocal Raman imaging 19.1.3 Hyperspectral Raman imaging in two dimensions and three dimensions 19.1.4 Examples of Raman imaging in biology and medicine 19.1.5 Nonbiological applications of Raman imaging 19.2 Surface- and Tip-Enhanced (SERS and TERS) Raman Imaging 19.2.1 Biomedical imaging based on SERS 19.2.2 Raman imaging at the nanoscale: TERS imaging 19.3 SRL (STIMULATED RAMAN LOSS) Imaging 19.3.1 Concepts of SRL imaging 19.3.2 Selected applications of SRL imaging 19.4 CARS Imaging 19.4.1 Concepts of CARS imaging 19.4.2 Selected applications of CARS microscopic imaging 19.5 Breakthroughs and the cutting edge 19.5.1 Breakthrough: Hyperspectral CARS imaging utilizing frequency combs 19.5.2 At the cutting edge: Superresolution Raman microscopy Chapter 20: Diffuse Optical Imaging 20.1 Basic concepts 20.1.1 Scattering and absorption in biological tissue 20.1.2 What can we learn from diffuse optical imaging and spectroscopy? 20.1.3 Historical snapshots in the development of DOI 20.2 Basic implementation and experimental methodologies 20.2.1 Key equipment components for DOI 20.2.2 Experimental methodology 1: CW systems 20.2.3 Experimental methodology 2: FD systems 20.2.4 Experimental methodology 3: TD systems 20.2.5 Comparison between the three experimental methods 20.3 Modeling of diffuse scattering and image reconstruction 20.3.1 Modeling light transport through tissue 20.3.2 The forward problem 20.3.3 The reverse Problem—Principles of image reconstruction 20.4 Clinical applications of DOI and spectroscopy 20.4.1 DOT and spectroscopy of breast cancer 20.4.2 Diffuse optical topography and tomography of the brain 20.5 Nonclinical applications of DOI and spectroscopy 20.5.1 Single-point bulk measurements on fruits 20.5.2 Multipoint measurements on fruits yielding 2D images 20.5.3 MSI and HSI of fruits 20.6 Brief comparison with other medical imaging techniques 20.7 Breakthroughs and the cutting edge 20.7.1 Breakthrough: DOI of brain activities 20.7.2 At the cutting edge: Photoacoustic tomography–toward DOI with high spatial resolution Chapter 21: Imaging Based on Absorption and Ion Detection Methods 21.1 Imaging Exploiting Absorption Spectroscopy: From the Macro- to the Nanoscale 21.1.1 Experimental implementation of imaging exploiting absorption spectroscopy IR/NIR chemical imaging Photoacoustic imaging IR/NIR imaging at the nanoscale 21.1.2 IR/NIR chemical imaging 21.1.3 Detecting “hidden” structures using terahertz imaging Terahertz imaging for weapon and explosive detection Time-gated terahertz spectral imaging 21.1.4 IR imaging at the nanoscale 21.2 Imaging Exploiting Absorption Spectroscopy: Selected Applications in Biology and Medicine 21.2.1 Imaging based on FTIR methodologies 21.2.2 Imaging based on terahertz methodologies Terahertz dynamic imaging of skin drug absorption Terahertz imaging for early screening of diabetic foot syndrome 21.2.3 Imaging based on photoacoustic methodologies 21.3 Charged Particle Imaging: Basic Concepts and Implementation 21.3.1 Basic concepts of unimolecular and bimolecular collisions Unimolecular collisions (photofragmentation dynamics) Bimolecular reactive and nonreactive scattering 21.3.2 Newton sphere 21.3.3 Basic experimental setups 21.3.4 Methods for improving the resolution in ion imaging Technique of velocity map imaging Technique of “slice” imaging 21.3.5 Measuring time and position: Direct 3D ion imaging 21.3.6 Product-pair correlation by ion imaging 21.4 Charged Particle Imaging: Selected Examples for Ion and Electron Imaging 21.4.1 Photodissociation with oriented molecules 21.4.2 Imaging of the pair-correlated fragment channels in photodissociation 21.4.3 Nonreactive scattering: Energy transfer in bimolecular collisions 21.4.4 Reactive scattering: Bimolecular reactions 21.4.5 Product-pair correlation in bimolecular reactions 21.4.6 Imaging the motion of electrons across semiconductor heterojunctions 21.5 Breakthroughs and Cutting Edge 21.5.1 Breakthrough: First ion imaging experiment 21.5.2 At the cutting edge: PAM—toward label-free superresolution imaging Bibliography Index Copyright Title Page Dedication Contents Chapter 1: ‘I’m thinking’ – Oh, but are you? Chapter 2: Renegade perception Chapter 3: The Pushbacker sting Chapter 4: ‘Covid’: The calculated catastrophe Chapter 5: There is no ‘virus’ Chapter 6: Sequence of deceit Chapter 7: War on your mind Chapter 8: ‘Reframing’ insanity Chapter 9: We must have it? So what is it? Chapter 10: Human 2.0 Chapter 11: Who controls the Cult? Chapter 12: Escaping Wetiko Postscript Appendix: Cowan-Kaufman-Morell Statement on Virus Isolation Bibliography Index