ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Laser Spectroscopy and Laser Imaging: An Introduction

دانلود کتاب طیف سنجی لیزری و تصویربرداری با لیزر: مقدمه

Laser Spectroscopy and Laser Imaging: An Introduction

مشخصات کتاب

Laser Spectroscopy and Laser Imaging: An Introduction

ویرایش: 1 
نویسندگان: ,   
سری: Series in Optics and Optoelectronics 
ISBN (شابک) : 1466588225, 9781466588226 
ناشر: CRC Press 
سال نشر: 2018 
تعداد صفحات: 751 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 156 مگابایت 

قیمت کتاب (تومان) : 43,000



کلمات کلیدی مربوط به کتاب طیف سنجی لیزری و تصویربرداری با لیزر: مقدمه: مهندسی، هوافضا، خودرو، مهندسی زیستی، شیمی، عمران و محیط زیست، مدل سازی کامپیوتری، ساخت و ساز، طراحی، برق و الکترونیک، تولید و استخراج انرژی، سیستم های صنعتی، ساخت و عملیات، مهندسی دریایی، فناوری مواد و مواد، علوم مواد و مواد مرجع، مخابرات و حسگرها، مهندسی و حمل و نقل، شیمی، آلکالوئیدها، تحلیلی، بیوشیمی، فیزیک شیمیایی، کروماتوگرافی، بالینی، کریستالوگرافی، الکتروشیمی، عمومی و ارجاع



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Laser Spectroscopy and Laser Imaging: An Introduction به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب طیف سنجی لیزری و تصویربرداری با لیزر: مقدمه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب طیف سنجی لیزری و تصویربرداری با لیزر: مقدمه



\"کتابی بسیار ارزشمند برای دانشجویان کارشناسی ارشد و محققین در زمینه طیف سنجی لیزری که می توانم آن را کاملاً توصیه کنم\"
—Wolfgang Demtroder, دانشگاه فناوری کایزرسلاوترن< /I>

چگونه می توان تصویری منسجم از این زمینه با توجه به تمام تکنیک های موجود امروز ارائه داد؟ نویسندگان این کار دلهره آور را در این متن تاثیرگذار و پیشگامانه بر عهده گرفته اند. خوانندگان از مرور کلی مفاهیم اساسی با تمرکز بر کاربردهای علمی عملی و واقعی تجزیه و تحلیل و تصویربرداری طیف‌سنجی لیزری بهره خواهند برد. فصل‌ها از ساختاری منسجم پیروی می‌کنند که با خلاصه‌ای مختصر از اصول و مفاهیم کلیدی شروع می‌شود، سپس مروری بر کاربردها، مزایا و مشکلات و در نهایت بحث مختصری در مورد پیشرفت‌های اساسی و پیشرفت‌های جاری می‌شود. مثال‌های مورد استفاده در این متن از فیزیک و شیمی تا علوم محیطی، زیست‌شناسی و پزشکی را شامل می‌شود.

این کتاب برای هر کسی که در علوم فیزیکی، زیست‌شناسی یا پزشکی به دنبال مقدمه‌ای بر روش‌های طیف‌سنجی و تصویربرداری لیزری.

Helmut H. Telle استاد تمام در Instituto Pluridisciplinar، Universidad Complutense de Madrid، اسپانیا است.

< P>Angel González Ureña رئیس بخش پرتوهای مولکولی و لیزر، Instituto Pluridisciplinar، Universidad Complutense de Madrid، اسپانیا است.


توضیحاتی درمورد کتاب به خارجی

"a very valuable book for graduate students and researchers in the field of Laser Spectroscopy, which I can fully recommend"
―Wolfgang Demtröder, Kaiserslautern University of Technology

How would it be possible to provide a coherent picture of this field given all the techniques available today? The authors have taken on this daunting task in this impressive, groundbreaking text. Readers will benefit from the broad overview of basic concepts, focusing on practical scientific and real-life applications of laser spectroscopic analysis and imaging. Chapters follow a consistent structure, beginning with a succinct summary of key principles and concepts, followed by an overview of applications, advantages and pitfalls, and finally a brief discussion of seminal advances and current developments. The examples used in this text span physics and chemistry to environmental science, biology, and medicine.

This book is appropriate for anyone in the physical sciences, biology, or medicine looking for an introduction to laser spectroscopic and imaging methodologies.

Helmut H. Telle is a full professor at the Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain.

Ángel González Ureña is head of the Department of Molecular Beams and Lasers, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Contents
Detailed Contents
Series Preface
Preface
Acknowledgments
Authors
Chapter 1: Introduction
	1.1 Lasers and their impact on spectroscopy and imaging
		1.1.1 Laser properties of importance to spectroscopy
		1.1.2 Concepts of laser spectroscopy and imaging
	1.2 Organization of the book
		1.2.1 Introduction to photon–matter interaction processes, laser sources, and detection methodologies
		1.2.2 Spectroscopic techniques and their applications
		1.2.3 Laser-spectroscopic imaging
Chapter 2: Interaction of Light with Matter
	2.1 Absorption and emission of radiation
		2.1.1 Einstein coefficients and transition probabilities
		2.1.2 Quantitative description of light absorption—The Beer–Lambert law
	2.2 Fluorescence and phosphorescence
	2.3 Light scattering
		2.3.1 Rayleigh scattering
		2.3.2 Mie scattering
		2.3.3 Reflection and refraction
	2.4 Light scattering: Inelastic processes
		2.4.1 Brillouin scattering
		2.4.2 Raman scattering
	2.5 Breakthroughs and the cutting edge
		2.5.1 Breakthrough: Color in prehistoric times
		2.5.2 At the cutting edge: Single-photon spectroscopy of a single molecule
Chapter 3: The Basics of Lasers
	3.1 Framework for laser action
		3.1.1 Rate equations
		3.1.2 Population inversion in the steady-state limit
		3.1.3 Laser cavities
		3.1.4 Laser gain
		3.1.5 Cavity dynamics and the evolution of laser photons
	3.2 Laser cavities: Spatial field distributions and laser beams
		3.2.1 Transverse mode structure
		3.2.2 Gaussian beams and their propagation
	3.3 Laser cavities: Mode frequencies, line shapes, and spectra
		3.3.1 Frequency mode structure
		3.3.2 Line profiles and widths
		3.3.3 Laser linewidth, gain bandwidth, and laser spectrum
		3.3.4 Single-mode laser operation
	3.4 Laser cavities: Temporal characteristics
		3.4.1 CW operation and laser output modulation
		3.4.2 Pulsed laser operation
		3.4.3 Mode locking: Generation of ultrashort picosecond and femtosecond pulses
		3.4.4 Group delay dispersion: Shortening and lengthening ultrashort (chirped) pulses
	3.5 Polarization and coherence properties of lasers and laser beams
		3.5.1 Laser polarization
		3.5.2 Tailoring the polarization of a laser beam: Linear, circular, and radial polarization
		3.5.3 Coherence
	3.6 Breakthroughs and the cutting edge
		3.6.1 Breakthrough: Theoretical description of modes in a laser cavity
		3.6.2 At the cutting edge: Steady-state ab initio laser theory for complex gain media
Chapter 4: Laser Sources Based on Gaseous, Liquid, or Solid-State Active Media
	4.1 Parameters of importance for laser spectroscopy and laser imaging
	4.2 Gas laser sources (mostly fixed frequency)
	4.3 Dye lasers (tunable frequency)
	4.4 Solid-state laser sources (fixed and tunable frequency)
		4.4.1 Nd:YAG lasers
		4.4.2 Ti:sapphire lasers
	4.5 Fiber laser sources
		4.5.1 Wavelength selection and tunability
		4.5.2 Q-Switched and mode-locked pulse generation
		4.5.3 Supercontinuum sources
		4.5.4 Fiber lasers versus bulk solid-state lasers
	4.6 Breakthroughs and the cutting edge
		4.6.1 Breakthrough: Ti:sapphire lasers
		4.6.2 At the cutting edge: OFCs for high-resolution spectroscopy
Chapter 5: Laser Sources Based on Semiconductor Media and Nonlinear Optic Phenomena
	5.1 Semiconductor laser sources
		5.1.1 Principles of laser diodes
		5.1.2 Laser diode resonators
		5.1.3 Monolithic diode laser devices
		5.1.4 External cavity diode lasers (ECDL)
		5.1.5 Optically pumped ECDLs
	5.2 Quantum cascade lasers
	5.3 Laser sources based on NLO: Sum and difference frequency conversion
		5.3.1 Basic principles of frequency conversion in nonlinear media
		5.3.2 Phase matching
		5.3.3 Selected nonlinear crystals and their common uses
		5.3.4 Conversion efficiency and ways to increase it
		5.3.5 Outside- and inside-cavity NLO-crystal configurations
	5.4 Laser sources based on NLO: Optical parametric amplification (down-conversion)
		5.4.1 OPG and OPOs
	5.5 Remarks on laser safety
		5.5.1 How do laser wavelengths affect our eyes?
		5.5.2 Maximum permissible exposure and accessible emission limit
		5.5.3 Laser classification
		5.5.4 Laser safety eyewear
	5.6 Breakthroughs and the cutting edge
		5.6.1 Breakthrough: Semiconductor laser diodes
		5.6.2 Breakthrough: Widely tunable QCLs
		5.6.3 At the  cutting edge: HHG and attosecond pulses
Chapter 6: Common Spectroscopic and Imaging Detection Techniques
	6.1 Spectral and image information: How to recover them from experimental data
		6.1.1 Spectral information and its retrieval from photon events
		6.1.2 Image information and its retrieval from photon events
		6.1.3 Spectral/image information and its retrieval from charged-particle events
	6.2 Photon detection: Single element devices
		6.2.1 PDs and their principal modes of operation
		6.2.2 Types of PDs
		6.2.3 Important operating parameters of PDs
		6.2.4 Photomultiplier tubes
		6.2.5 Important operating parameters of photomultipliers
	6.3 Photon detection: Multielement array devices
		6.3.1 PDA sensors
		6.3.2 CCD and CMOS array sensors
		6.3.3 On-chip amplified image sensors: EMCCD and e-APD devices
		6.3.4 Externally amplified and gated image sensors: ICCD devices
	6.4 Charged particle detection
		6.4.1 Direct charge detectors—Faraday cup
		6.4.2 Single-element amplifying detectors—Channeltron
		6.4.3 Multiple-element amplifying detectors—MCP
	6.5 Detection by indirect phenomena
		6.5.1 Photothermal/photoacoustic spectroscopy
		6.5.2 Photoacoustic imaging
		6.5.3 Photoacoustic Raman (stimulated Raman) scattering
	6.6 Signals, noise, and signal recovery methodologies
		6.6.1 Signals and noise
		6.6.2 Low-intensity “continuous” signals—Lock-in methods
		6.6.3 Low-intensity pulsed signals—Gating methods
	6.7 Breakthroughs and the cutting edge
		6.7.1 Breakthrough: First transistorized lock-in amplifier
		6.7.2 Breakthrough: First demonstration of CCD imaging
		6.7.3 At the cutting edge: Nanoscale light detectors and imaging
Chapter 7: Absorption Spectroscopy and Its Implementation
	7.1 Concepts of linear absorption spectroscopy
		7.1.1 Absorption coefficient and cross section
		7.1.2 Spectral line profiles
	7.2 Line broadening and line shapes in absorption spectroscopy
		7.2.1 Natural broadening
		7.2.2 Collisional or pressure broadening
		7.2.3 Doppler broadening
		7.2.4 Combined line profiles—The Voigt convolution profile
		7.2.5 Other effects impacting on linewidth
	7.3 Nonlinear absorption spectroscopy
		7.3.1 Saturation spectroscopy
		7.3.2 Polarization spectroscopy
	7.4 Multiphoton absorption processes
		7.4.1 Two-photon absorption spectroscopy
		7.4.2 Doppler-free TPA
		7.4.3  Multiphoton absorption and molecular dissociation
	7.5 Key parameters and experimental methodologies in absorption spectroscopy
		7.5.1 Wavelength regimes
		7.5.2 Spectral resolving power
		7.5.3 Experimental methodologies
	7.6 Breakthroughs and the cutting edge
		7.6.1 Breakthrough: Absorption spectroscopy utilizing SC sources
		7.6.2 At the cutting edge: Precision laser spectroscopy of hydrogen: Challenging QED?
Chapter 8: Selected Applications of Absorption Spectroscopy
	8.1 Basic methodologies based on broadband sources
		8.1.1 BB-AS utilizing SC sources
		8.1.2 Minimum detectable concentrations and LODs
	8.2 Absorption spectroscopy using frequency combs
		8.2.1 Basic concepts of frequency combs
		8.2.2 Measuring and controlling frequency-comb parameters
		8.2.3 Spectroscopic metrology based on frequency combs
		8.2.4 Direct frequency comb spectroscopy—DFCS
	8.3 Absorption spectroscopy using tunable diode and quantum-cascade laser (QCL) sources
		8.3.1 Tunable diode laser absorption spectroscopy
		8.3.2 QCL in absorption spectroscopy
		8.3.3 cw-QCL absorption spectroscopy
		8.3.4 EC-QCL absorption spectroscopy
		8.3.5 p-QCL absorption spectroscopy
	8.4 Cavity-enhancement techniques
		8.4.1 Intracavity laser absorption spectroscopy
		8.4.2 Cavity ring-down spectroscopy
	8.5 Terahertz spectroscopy
		8.5.1 Basic features and experimental methodologies
		8.5.2 Applications of terahertz spectroscopy in molecular structure and chemical analysis
		8.5.3 Applications of terahertz spectroscopy in biology and medicine
	8.6 Photoacoustic and photothermal spectroscopy with lasers
		8.6.1 Quartz-enhanced PAS
	8.7 Breakthroughs and the cutting edge
		8.7.1 Breakthrough: Cavity-enhanced absorption spectroscopy utilizing SC sources
		8.7.2 At the cutting edge: CRDS of optically trapped aerosol particles
Chapter 9: Fluorescence Spectroscopy and Its Implementation
	9.1 Fundamental Aspects of Fluorescence Emission
		9.1.1 The concept of fluorophores
		9.1.2 Principal processes in excited-state fluorescence
	9.2 Structure of Fluorescence Spectra
	9.3 Radiative Lifetimes and Quantum Yields
	9.4 Quenching, Transfer, and Delay of Fluorescence
		9.4.1 Fluorescence quenching and the Stern–Volmer law
		9.4.2 Förster resonance energy transfer
		9.4.3 Delayed fluorescence
	9.5 Fluorescence Polarization and Anisotropy
	9.6 Single-Molecule Fluorescence
	9.7 Breakthroughs and the cutting edge
		9.7.1 Breakthrough: Coining the term “fluorescence”
		9.7.2 Breakthrough: First LIF spectroscopy
		9.7.3 At the cutting edge: Laser-stimulated fluorescence on the macroscopic level—Fluorescing fossils
Chapter 10: Selected Applications of Laser-Induced Fluorescence Spectroscopy
	10.1 LIF measurement instrumentation in spectrofluorimetry
	10.2 Steady-state laser-induced fluorescence spectroscopy
		10.2.1 LIF in gas-phase molecular spectroscopy
		10.2.2 LIF applied to reaction dynamics
		10.2.3 LIF in analytical chemistry
		10.2.4 LIF for medical diagnosis
	10.3 Time-resolved LIF spectroscopy
		10.3.1 Measurements of lifetimes in the FD
		10.3.2 Measurements of lifetimes in the time domain: TCSPC
		10.3.3 LIF applied to femtosecond transition-state spectroscopy
	10.4 LIF spectroscopy at the small scale
		10.4.1 LIF microscopy
		10.4.2 Fluorescence-correlation spectroscopy
	10.5 Breakthroughs and the cutting edge
		10.5.1 Breakthrough: First LIF measurements to resolve the internal state distribution of reaction products
		10.5.2 At the cutting edge: FRET measurement of gaseous ionized proteins
Chapter 11: Raman Spectroscopy and Its Implementation
	11.1 Fundamentals of the Raman process: Excitation and detection
	11.2 The structure of Raman spectra
		11.2.1 Stokes and anti-Stokes Raman scattering
		11.2.2 “Pure” rotational Raman spectra
		11.2.3 Ro-vibrational Raman bands
		11.2.4 Hot bands, overtones, and combination bands
		11.2.5 Peculiarities in the Raman spectra from liquids and solid samples
		11.2.6 Polarization effects in Raman spectra
	11.3 Basic experimental implementations: Key issues on excitation and detection
		11.3.1 Laser excitation sources
		11.3.2 Delivery of excitation laser light
		11.3.3 Samples and their incorporation into the overall setup
		11.3.4 Raman light collection
		11.3.5 Wavelength separation/selection devices
		11.3.6 Photon detectors
		11.3.7 Signal acquisition and data analysis equipment
	11.4 Raman spectroscopy and its variants
		11.4.1 Spontaneous Raman spectroscopy variants
		11.4.2 “Enhanced” Raman techniques
		11.4.3 Nonlinear Raman techniques
	11.5 Advantages and drawbacks, and comparison to other “vibrational“ analysis techniques
		11.5.1 The problem of fluorescence
		11.5.2 Advantages and drawbacks of Raman spectroscopy, and comparison to (IR) absorption spectroscopy
	11.6 Breakthroughs and the cutting edge
		11.6.1 Breakthrough: UV Raman spectroscopy
		11.6.2 At the cutting edge: Atomic properties probed by Raman spectroscopy
Chapter 12: Linear Raman Spectroscopy
	12.1 The framework for qualitative and quantitative Raman spectroscopy
		12.1.1 Determining and calibrating the Raman excitation laser wavelength
		12.1.2 Calibrating the spectrometer wavelength and Raman shift scales
		12.1.3 Intensity calibration for quantitative Raman spectra
		12.1.4 Quantification of molecular constituents in a sample
	12.2 Measuring Molecular Properties Using Linear Raman Spectroscopy
		12.2.1 Raman scattering of polarized light waves
		12.2.2 Depolarization ratios
			Totally symmetric vibrational modes
			Non-totally symmetric vibrational modes
		12.2.3 Measuring depolarization ratio
		12.2.4 Raman optical activity
	12.3 Raman Spectroscopy of Gaseous Samples
		12.3.1 Spectroscopy of rotational and vibrational features
		12.3.2 Analytical Raman spectroscopy and process monitoring
		12.3.3 Remote sensing using Raman spectroscopy—The Raman LIDAR
	12.4 Raman Spectroscopy of Liquid Samples
		12.4.1 Spectroscopic aspects of Raman spectroscopy in liquids
		12.4.2 Analytical aspects of Raman spectroscopy in liquids
		12.4.3 “Super-resolution” Raman spectroscopy
	12.5 Raman Spectroscopy of Solid Samples
		12.5.1 Spectroscopic and structural information for “ordered” materials
		12.5.2 Analytical and diagnostic applications for “soft tissue” samples
	12.6 Breakthroughs and the Cutting Edge
		12.6.1 Breakthrough: Raman spectroscopy in the terahertz range
		12.6.2 At the cutting edge: Raman spectroscopy in the search for life on Mars
Chapter 13: Enhancement Techniques in Raman Spectroscopy
	13.1 Waveguide-Enhanced Raman Spectroscopy
		13.1.1 Raman spectroscopy using liquid-core waveguides (LC-OF)
		13.1.2 Hollow-core metal-lined waveguides
		13.1.3 Hollow-core photonic-crystal fibers
		13.1.4 Measures to reduce fluorescence contributions in backward Raman setups
	13.2 Cavity-Enhanced Raman Spectroscopy
	13.3 Resonance Raman Spectroscopy
		13.3.1 Basic concepts of resonance Raman scattering
		13.3.2 Applications of RRS to probing of excited electronic state quantum levels
		13.3.3 Applications of RRS to obtain structural information for large molecules
		13.3.4 Applications of RRS to analytical problems
	13.4 Breakthroughs and The Cutting Edge
		13.4.1 Breakthrough: First RRS of heme-proteins
		13.4.2 At the cutting edge: Low-concentration gas sensors based on HC-PCFs
Chapter 14: Nonlinear Raman Spectroscopy
	14.1 Basic Concepts and Classification of Nonlinear Raman Responses
		14.1.1 Incoherent vs. coherent signal character
		14.1.2 Spontaneous vs. stimulated scattering processes
			Stimulated Raman resonance
			Stimulated detection mode
		14.1.3 Homodyne vs. heterodyne detection
	14.2 Nonlinear Interaction with Surfaces: SERS
		14.2.1 Trying to understand SERS spectra
		14.2.2 Single spherical nanoparticle model for SERS
		14.2.3 E4-enhancement in the Raman response
		14.2.4 Wavelength dependence of the E4-enhancement
		14.2.5 Distance dependence of the E4-enhancement
		14.2.6 Chemical enhancement in the Raman response
		14.2.7 SERS substrates
	14.3 Variants of SERS—Toward Ultralow Concentration and Ultrahigh Spatial Resolution RS
		14.3.1 Preconcentration of ultralow concentration samples—SLIPSERS
		14.3.2 Single-molecule SERS
		14.3.3 Principles of tip-enhanced RS
	14.4 HYPER-RAMAN SPECTROSCOPY: HRS
	14.5 Stimulated Raman Scattering and Spectroscopy: SRS
		14.5.1 SRS using tunable probe laser sources
		14.5.2 SRS using ps- and fs-laser sources (fs-SRS)
	14.6 Coherent Anti-Stokes Raman Scattering and Spectroscopy: CARS
		14.6.1 Basic framework for CARS
		14.6.2 Tuned single-mode and ns-pulse CARS
		14.6.3 Broadband fs-pulse CARS and time-resolved CARS
		14.6.4 Spontaneous, stimulated, and coherent anti-Stokes Raman spectroscopies in comparison
	14.7 Breakthroughs and the cutting edge
		14.7.1 Breakthrough: SERS using silver films over nanospheres (AgFON)
		14.7.2 Breakthrough: Toward “pen-on-paper” SERS substrates
		14.7.3 At the cutting edge: Seeing a single molecule vibrate utilizing tr-CARS
Chapter 15: Laser-Induced Breakdown Spectroscopy
	15.1 Method of LIBS
		15.1.1 Basic concepts: Plasma generation and characterization
		15.1.2 Basic experimental setups and ranging approaches
		15.1.3 Double-pulse excitation
		15.1.4 Portable, remote, and standoff LIBS
		15.1.5 Femtosecond LIBS
	15.2 Qualitative and Quantitative LIBS Analyses
	15.3 Selected LIBS Applications
		15.3.1 Application of LIBS to liquids and samples submerged in liquids
		15.3.2 Detection of hazardous substances by ST-LIBS
		15.3.3 Space applications
		15.3.4 Industrial applications
	15.4 Breakthroughs anD the cutting edge
		15.4.1 Breakthrough: Quantitative LIBS analysis using nanosecond- and femtosecond-pulse lasers
		15.4.2 At the cutting edge: Elemental chemical mapping of biological samples using LIBS
Chapter 16: Laser Ionization Techniques
	16.1 Basic Concepts of REMPI
		16.1.1 Quantitative description of REMPI in the framework of rate equations
		16.1.2 REMPI signal intensity
		16.1.3 Selection rules for the ionization step in REMPI
		16.1.4 Conceptual experimental REMPI setups
	16.2 Applications of REMPI in Molecular Spectroscopy and to Chemical Interaction Processes
		16.2.1 Molecular spectroscopy utilizing REMPI
			Spectroscopy of the molecule nitric oxide (NO)
			Spectroscopy of the radicals calcium hydride/calcium deuteride (CaH/CaD)
		16.2.2 Investigation of chemical reactions utilizing REMPI
			Hydrogen exchange reaction H + D2 ! HD + D
			Excited-state chemical reaction O*(1D) + N2O
			Doppler-selected REMPI-ToF
		16.2.3 Photodissociation studies utilizing REMPI
			Photodissociation of N2O
		16.2.4 REMPI spectroscopy of catalytic reactions
			Recombination of D2 at the surface of Pd(100)
	16.3 REMPI and Analytical Chemistry
		16.3.1 REMPI spectroscopy with isotopologue and isomeric selectivity
		16.3.2 REMPI spectroscopy in trace and environmental analyses
			REMPI of NO in exhaled breath
			REMPI of polyaromatic hydrocarbons
		16.3.3 Following biological processes by using REMPI spectroscopy
	16.4 ZEKE Spectroscopy
		16.4.1 Methodology of ZEKE spectroscopy
		16.4.2 Measurement modality of pulsed-field ionization: PFI-ZEKE
		16.4.3 Examples of high-resolution ZEKE spectroscopy
			Quasi-bound rotational levels of H2+
			Line intensities in the vibrational progressions of the ZEKE spectra: The I2 molecule
			Low-frequency modes: van der Waals complexes and internal rotation of molecular cations
		16.4.4 MATI spectroscopy
	16.5 Technique of H Atom Rydberg Tagging
		16.5.1 Reaction H + D2 ! HD + D
		16.5.2 Reaction of F atoms with H2 molecules: Dynamical resonances
		16.5.3 Four-atom reaction OH + D2 ! HOD + D
	16.6 Breakthroughs and the cutting edge
		16.6.1 Breakthrough: First state-resolved REMPI spectrum of a molecule
		16.6.2 At the cutting edge: Ultrahigh sensitivity PAH analysis using GC-APLI-MS
Chapter 17: Basic Concepts of Laser Imaging
	17.1 Concepts of Imaging with Laser Light
		17.1.1 Laser illumination concepts: Point, line, and sheet patterns in transparent gas and liquid samples
		17.1.2 Laser illumination concepts: Point, line, and sheet patterns in condensed-phase samples
		17.1.3 Image sensing and recording concepts
		17.1.4 Multispectral and hyperspectral recording
	17.2 Image Generation, Image Sampling, and Image Reconstruction
		17.2.1 Sampling and its relation to signal digitization
		17.2.2 Sampling and its relation to spatial resolution
		17.2.3 Sampling and its relation to spectral resolution
		17.2.4 Image reconstruction
	17.3 Superresolution Imaging
		17.3.1 Sub-Abbé limit localization and “classical” superresolution strategies
		17.3.2 Imaging and reconstruction strategies for structured illumination methods
		17.3.3 Imaging and reconstruction strategies for local-saturation methods
		17.3.4 Imaging and reconstruction strategies for single-molecule response methods
	17.4 Breakthroughs and the cutting edge
		17.4.1 Breakthrough: Airy-scan detection in confocal laser microscopy
		17.4.2 At the cutting edge: Single-pixel detector multispectral imaging
Chapter 18: Laser-Induced Fluorescence Imaging
	18.1 Two- and three-dimensional planar laser-Induced fluorescence imaging
		18.1.1 PLIF imaging in gaseous samples
			Basic theory and experimental setup
		18.1.2 Selected examples for PLIF of gaseous samples
			OH imaging in a turbulent nonpremixed flame
			Kerosene combustion in multipoint injectors
			Gelled fuel droplet combustion
			PLIF imaging in catalysis
		18.1.3 PLIF imaging of biological tissues
	18.2 Fluorescence Molecular Tomography
		18.2.1 Basic concepts
		18.2.2 Examples of FMT
	18.3 Superresolution Microscopy
		18.3.1 STED microscopy
		18.3.2 RESOLFT microscopy
		18.3.3 SIM and SSIM
	18.4 Superresolution Fluorescence Microscopy based on Single-Molecule Imaging
		18.4.1 Basic principles of STORM/PALM
		18.4.2 Fluorophore localization
		18.4.3 Factors affecting the resolution in STORM/PALM imaging
		18.4.4 Toward 3D superresolution imaging: Interferometric PALM
	18.5 Breakthroughs and The Cutting Edge
		18.5.1 Breakthrough: GFP as a marker for gene expression
		18.5.2  At the cutting edge
Chapter 19: Raman Imaging and Microscopy
	19.1 Raman Microscopic Imaging
		19.1.1 Concepts of Raman imaging and microscopy
		19.1.2 Confocal Raman imaging
		19.1.3 Hyperspectral Raman imaging in two dimensions and three dimensions
		19.1.4 Examples of Raman imaging in biology and medicine
		19.1.5 Nonbiological applications of Raman imaging
	19.2 Surface- and Tip-Enhanced (SERS and TERS) Raman Imaging
		19.2.1 Biomedical imaging based on SERS
		19.2.2 Raman imaging at the nanoscale: TERS imaging
	19.3 SRL (STIMULATED RAMAN LOSS) Imaging
		19.3.1 Concepts of SRL imaging
		19.3.2 Selected applications of SRL imaging
	19.4 CARS Imaging
		19.4.1 Concepts of CARS imaging
		19.4.2 Selected applications of CARS microscopic imaging
	19.5 Breakthroughs and the cutting edge
		19.5.1 Breakthrough: Hyperspectral CARS imaging utilizing frequency combs
		19.5.2 At the cutting edge: Superresolution Raman microscopy
Chapter 20: Diffuse Optical Imaging
	20.1 Basic concepts
		20.1.1 Scattering and absorption in biological tissue
		20.1.2 What can we learn from diffuse optical imaging and spectroscopy?
		20.1.3 Historical snapshots in the development of DOI
	20.2 Basic implementation and experimental methodologies
		20.2.1 Key equipment components for DOI
		20.2.2 Experimental methodology 1: CW systems
		20.2.3 Experimental methodology 2: FD systems
		20.2.4 Experimental methodology 3: TD systems
		20.2.5 Comparison between the three experimental methods
	20.3 Modeling of diffuse scattering and image reconstruction
		20.3.1 Modeling light transport through tissue
		20.3.2 The forward problem
		20.3.3 The reverse Problem—Principles of image reconstruction
	20.4 Clinical applications of DOI and spectroscopy
		20.4.1 DOT and spectroscopy of breast cancer
		20.4.2 Diffuse optical topography and tomography of the brain
	20.5 Nonclinical applications of DOI and spectroscopy
		20.5.1 Single-point bulk measurements on fruits
		20.5.2 Multipoint measurements on fruits yielding 2D images
		20.5.3 MSI and HSI of fruits
	20.6 Brief comparison with other medical imaging techniques
	20.7 Breakthroughs and the cutting edge
		20.7.1 Breakthrough: DOI of brain activities
		20.7.2 At the cutting edge: Photoacoustic tomography–toward DOI with high spatial resolution
Chapter 21: Imaging Based on Absorption and Ion Detection Methods
	21.1 Imaging Exploiting Absorption Spectroscopy: From the Macro- to the Nanoscale
		21.1.1 Experimental implementation of imaging exploiting absorption spectroscopy
			IR/NIR chemical imaging
			Photoacoustic imaging
			IR/NIR imaging at the nanoscale
		21.1.2 IR/NIR chemical imaging
		21.1.3 Detecting “hidden” structures using terahertz imaging
			Terahertz imaging for weapon and explosive detection
			Time-gated terahertz spectral imaging
		21.1.4 IR imaging at the nanoscale
	21.2 Imaging Exploiting Absorption Spectroscopy: Selected Applications in Biology and Medicine
		21.2.1 Imaging based on FTIR methodologies
		21.2.2 Imaging based on terahertz methodologies
			Terahertz dynamic imaging of skin drug absorption
			Terahertz imaging for early screening of diabetic foot syndrome
		21.2.3 Imaging based on photoacoustic methodologies
	21.3 Charged Particle Imaging: Basic Concepts and Implementation
		21.3.1 Basic concepts of unimolecular and bimolecular collisions
			Unimolecular collisions (photofragmentation dynamics)
			Bimolecular reactive and nonreactive scattering
		21.3.2 Newton sphere
		21.3.3 Basic experimental setups
		21.3.4 Methods for improving the resolution in ion imaging
			Technique of velocity map imaging
			Technique of “slice” imaging
		21.3.5 Measuring time and position: Direct 3D ion imaging
		21.3.6 Product-pair correlation by ion imaging
	21.4 Charged Particle Imaging: Selected Examples for Ion and Electron Imaging
		21.4.1 Photodissociation with oriented molecules
		21.4.2 Imaging of the pair-correlated fragment channels in photodissociation
		21.4.3 Nonreactive scattering: Energy transfer in bimolecular collisions
		21.4.4 Reactive scattering: Bimolecular reactions
		21.4.5 Product-pair correlation in bimolecular reactions
		21.4.6 Imaging the motion of electrons across semiconductor heterojunctions
	21.5 Breakthroughs and Cutting Edge
		21.5.1 Breakthrough: First ion imaging experiment
		21.5.2 At the cutting edge: PAM—toward label-free superresolution imaging
Bibliography
Index
Copyright
Title Page
Dedication
Contents
Chapter 1: ‘I’m thinking’ – Oh, but are you?
Chapter 2: Renegade perception
Chapter 3: The Pushbacker sting
Chapter 4: ‘Covid’: The calculated catastrophe
Chapter 5: There is no ‘virus’
Chapter 6: Sequence of deceit
Chapter 7: War on your mind
Chapter 8: ‘Reframing’ insanity
Chapter 9: We must have it? So what is it?
Chapter 10: Human 2.0
Chapter 11: Who controls the Cult?
Chapter 12: Escaping Wetiko
Postscript
Appendix: Cowan-Kaufman-Morell Statement on Virus Isolation
Bibliography
Index




نظرات کاربران