دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed] نویسندگان: Alberto Boschetti, Luca Massaron, Bastiaan Sjardin سری: ISBN (شابک) : 9781785888021, 1785888021 ناشر: Packt Publishing سال نشر: 2016 تعداد صفحات: 420 زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 6 Mb
در صورت تبدیل فایل کتاب Large Scale Machine Learning with Python به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری ماشینی در مقیاس بزرگ با پایتون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Achieving SVM at scale with SGD -- Feature selection by regularization -- Including non-linearity in SGD -- Trying explicit high-dimensional mappings -- Hyperparameter tuning -- Other alternatives for SVM fast learning -- Nonlinear and faster with Vowpal Wabbit -- Installing VW -- Understanding the VW data format -- Python integration -- A few examples using reductions for SVM and neural nets -- Faster bike-sharing -- The covertype dataset crunched by VW -- Summary -- Chapter 4: Neural Networks and Deep Learning -- The neural network architecture -- What and how neural networks learn -- Choosing the right architecture -- The input layer -- The hidden layer -- The output layer -- Neural networks in action -- Parallelization for sknn -- Neural networks and regularization -- Neural networks and hyperparameter optimization -- Neural networks and decision boundaries -- Deep learning at scale with H2O -- Large scale deep learning with H2O -- Gridsearch on H2O -- Deep learning and unsupervised pretraining -- Deep learning with theanets -- Autoencoders and unsupervised learning -- Autoencoders -- Summary -- Chapter 5: Deep Learning with TensorFlow -- TensorFlow installation -- TensorFlow operations -- GPU computing -- Linear regression with SGD -- A neural network from scratch in TensorFlow -- Machine learning on TensorFlow with SkFlow -- Deep learning with large files - incremental learning -- Keras and TensorFlow installation -- Convolutional Neural Networks in TensorFlow through Keras -- The convolution layer -- The pooling layer -- The fully connected layer -- CNN's with an incremental approach -- GPU Computing -- Summary -- Chapter 6: Classification and Regression Trees at Scale -- Bootstrap aggregation -- Random forest and extremely randomized forest -- Fast parameter optimization with randomized search -- Extremely randomized trees and large datasets
CART and boosting -- Gradient Boosting Machines -- max_depth -- learning_rate -- Subsample -- Faster GBM with warm_start -- Training and storing GBM models -- XGBoost -- XGBoost regression -- XGBoost and variable importance -- XGBoost streaming large datasets -- XGBoost model persistence -- Out-of-core CART with H2O -- Random forest and gridsearch on H2O -- Stochastic gradient boosting and gridsearch on H2O -- Summary -- Chapter 7: Unsupervised Learning at Scale -- Unsupervised methods -- Feature decomposition - PCA -- Randomized PCA -- Incremental PCA -- Sparse PCA -- PCA with H2O -- Clustering - K-means -- Initialization methods -- K-means assumptions -- Selection of the best K -- Scaling K-means - mini-batch -- K-means with H2O -- LDA -- Scaling LDA - memory, CPUs, and machines -- Summary -- Chapter 8: Distributed Environments - Hadoop and Spark -- From a standalone machine to a bunch of nodes -- Why do we need a distributed framework? -- Setting up the VM -- VirtualBox -- Vagrant -- Using the VM -- The Hadoop ecosystem -- Architecture -- HDFS -- MapReduce -- YARN -- Spark -- pySpark -- Summary -- Chapter 9: Practical Machine Learning with Spark -- Setting up the VM for this chapter -- Sharing variables across cluster nodes -- Broadcast read-only variables -- Accumulators write-only variables -- Broadcast and accumulators together - an example -- Data preprocessing in Spark -- JSON files and Spark DataFrames -- Dealing with missing data -- Grouping and creating tables in-memory -- Writing the preprocessed DataFrame or RDD to disk -- Working with Spark DataFrames -- Machine learning with Spark -- Spark on the KDD99 dataset -- Reading the dataset -- Feature engineering -- Training a learner -- Evaluating a learner's performance -- The power of the ML pipeline -- Manual tuning -- Cross-validation -- Final cleanup -- Summary
Appendix:
Introduction to GPUs and Theano -- GPU computing -- Theano -
parallel computing on the GPU -- Installing Theano --
Index Read
more...
Abstract: Cover -- Copyright -- Credits -- About the Authors
-- About the Reviewers -- www.PacktPub.com -- Table of
Contents -- Preface -- Chapter 1: First Steps to Scalability
-- Explaining scalability in detail -- Making large scale
examples -- Introducing Python -- Scale up with Python --
Scale out with Python -- Python for large scale machine
learning -- Choosing between Python 2 and Python 3 --
Installing Python -- Step-by-step installation -- The
installation of packages -- Package upgrades -- Scientific
distributions -- Introducing Jupyter/IPython -- Python
packages -- NumPy -- SciPy -- Pandas -- Scikit-learn -- The
matplotlib package -- Gensim -- H2O -- XGBoost -- Theano --
TensorFlow -- The sknn library -- Theanets -- Keras -- Other
useful packages to install on your system -- Summary --
Chapter 2: Scalable Learning in Scikit-learn -- Out-of-core
learning -- Subsampling as a viable option -- Optimizing one
instance at a time -- Building an out-of-core learning system
-- Streaming data from sources -- Datasets to try the real
thing yourself -- The first example - streaming the
bike-sharing dataset -- Using pandas I/O tools -- Working
with databases -- Paying attention to the ordering of
instances -- Stochastic learning -- Batch gradient descent --
Stochastic gradient descent -- The Scikit-learn SGD
implementation -- Defining SGD learning parameters -- Feature
management with data streams -- Describing the target -- The
hashing trick -- Other basic transformations -- Testing and
validation in a stream -- Trying SGD in action -- Summary --
Chapter 3: Fast SVM Implementations -- Datasets to experiment
with on your own -- The bike-sharing dataset -- The covertype
dataset -- Support Vector Machines -- Hinge loss and its
variants -- Understanding the Scikit-learn SVM implementation
-- Pursuing nonlinear SVMs by subsampling
Achieving SVM at scale with SGD -- Feature selection by regularization -- Including non-linearity in SGD -- Trying explicit high-dimensional mappings -- Hyperparameter tuning -- Other alternatives for SVM fast learning -- Nonlinear and faster with Vowpal Wabbit -- Installing VW -- Understanding the VW data format -- Python integration -- A few examples using reductions for SVM and neural nets -- Faster bike-sharing -- The covertype dataset crunched by VW -- Summary -- Chapter 4: Neural Networks and Deep Learning -- The neural network architecture -- What and how neural networks learn -- Choosing the right architecture -- The input layer -- The hidden layer -- The output layer -- Neural networks in action -- Parallelization for sknn -- Neural networks and regularization -- Neural networks and hyperparameter optimization -- Neural networks and decision boundaries -- Deep learning at scale with H2O -- Large scale deep learning with H2O -- Gridsearch on H2O -- Deep learning and unsupervised pretraining -- Deep learning with theanets -- Autoencoders and unsupervised learning -- Autoencoders -- Summary -- Chapter 5: Deep Learning with TensorFlow -- TensorFlow installation -- TensorFlow operations -- GPU computing -- Linear regression with SGD -- A neural network from scratch in TensorFlow -- Machine learning on TensorFlow with SkFlow -- Deep learning with large files - incremental learning -- Keras and TensorFlow installation -- Convolutional Neural Networks in TensorFlow through Keras -- The convolution layer -- The pooling layer -- The fully connected layer -- CNN's with an incremental approach -- GPU Computing -- Summary -- Chapter 6: Classification and Regression Trees at Scale -- Bootstrap aggregation -- Random forest and extremely randomized forest -- Fast parameter optimization with randomized search -- Extremely randomized trees and large datasets
CART and boosting -- Gradient Boosting Machines -- max_depth -- learning_rate -- Subsample -- Faster GBM with warm_start -- Training and storing GBM models -- XGBoost -- XGBoost regression -- XGBoost and variable importance -- XGBoost streaming large datasets -- XGBoost model persistence -- Out-of-core CART with H2O -- Random forest and gridsearch on H2O -- Stochastic gradient boosting and gridsearch on H2O -- Summary -- Chapter 7: Unsupervised Learning at Scale -- Unsupervised methods -- Feature decomposition - PCA -- Randomized PCA -- Incremental PCA -- Sparse PCA -- PCA with H2O -- Clustering - K-means -- Initialization methods -- K-means assumptions -- Selection of the best K -- Scaling K-means - mini-batch -- K-means with H2O -- LDA -- Scaling LDA - memory, CPUs, and machines -- Summary -- Chapter 8: Distributed Environments - Hadoop and Spark -- From a standalone machine to a bunch of nodes -- Why do we need a distributed framework? -- Setting up the VM -- VirtualBox -- Vagrant -- Using the VM -- The Hadoop ecosystem -- Architecture -- HDFS -- MapReduce -- YARN -- Spark -- pySpark -- Summary -- Chapter 9: Practical Machine Learning with Spark -- Setting up the VM for this chapter -- Sharing variables across cluster nodes -- Broadcast read-only variables -- Accumulators write-only variables -- Broadcast and accumulators together - an example -- Data preprocessing in Spark -- JSON files and Spark DataFrames -- Dealing with missing data -- Grouping and creating tables in-memory -- Writing the preprocessed DataFrame or RDD to disk -- Working with Spark DataFrames -- Machine learning with Spark -- Spark on the KDD99 dataset -- Reading the dataset -- Feature engineering -- Training a learner -- Evaluating a learner's performance -- The power of the ML pipeline -- Manual tuning -- Cross-validation -- Final cleanup -- Summary
Appendix: Introduction to GPUs and Theano -- GPU computing -- Theano - parallel computing on the GPU -- Installing Theano -- Index