ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Large Scale Machine Learning with Python

دانلود کتاب یادگیری ماشینی در مقیاس بزرگ با پایتون

Large Scale Machine Learning with Python

مشخصات کتاب

Large Scale Machine Learning with Python

ویرایش: [1st ed] 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 9781785888021, 1785888021 
ناشر: Packt Publishing 
سال نشر: 2016 
تعداد صفحات: 420 
زبان: English 
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 6 Mb 

قیمت کتاب (تومان) : 51,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Large Scale Machine Learning with Python به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب یادگیری ماشینی در مقیاس بزرگ با پایتون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی

Cover -- Copyright -- Credits -- About the Authors -- About the Reviewers -- www.PacktPub.com -- Table of Contents -- Preface -- Chapter 1: First Steps to Scalability -- Explaining scalability in detail -- Making large scale examples -- Introducing Python -- Scale up with Python -- Scale out with Python -- Python for large scale machine learning -- Choosing between Python 2 and Python 3 -- Installing Python -- Step-by-step installation -- The installation of packages -- Package upgrades -- Scientific distributions -- Introducing Jupyter/IPython -- Python packages -- NumPy -- SciPy -- Pandas -- Scikit-learn -- The matplotlib package -- Gensim -- H2O -- XGBoost -- Theano -- TensorFlow -- The sknn library -- Theanets -- Keras -- Other useful packages to install on your system -- Summary -- Chapter 2: Scalable Learning in Scikit-learn -- Out-of-core learning -- Subsampling as a viable option -- Optimizing one instance at a time -- Building an out-of-core learning system -- Streaming data from sources -- Datasets to try the real thing yourself -- The first example - streaming the bike-sharing dataset -- Using pandas I/O tools -- Working with databases -- Paying attention to the ordering of instances -- Stochastic learning -- Batch gradient descent -- Stochastic gradient descent -- The Scikit-learn SGD implementation -- Defining SGD learning parameters -- Feature management with data streams -- Describing the target -- The hashing trick -- Other basic transformations -- Testing and validation in a stream -- Trying SGD in action -- Summary -- Chapter 3: Fast SVM Implementations -- Datasets to experiment with on your own -- The bike-sharing dataset -- The covertype dataset -- Support Vector Machines -- Hinge loss and its variants -- Understanding the Scikit-learn SVM implementation -- Pursuing nonlinear SVMs by subsampling

Achieving SVM at scale with SGD -- Feature selection by regularization -- Including non-linearity in SGD -- Trying explicit high-dimensional mappings -- Hyperparameter tuning -- Other alternatives for SVM fast learning -- Nonlinear and faster with Vowpal Wabbit -- Installing VW -- Understanding the VW data format -- Python integration -- A few examples using reductions for SVM and neural nets -- Faster bike-sharing -- The covertype dataset crunched by VW -- Summary -- Chapter 4: Neural Networks and Deep Learning -- The neural network architecture -- What and how neural networks learn -- Choosing the right architecture -- The input layer -- The hidden layer -- The output layer -- Neural networks in action -- Parallelization for sknn -- Neural networks and regularization -- Neural networks and hyperparameter optimization -- Neural networks and decision boundaries -- Deep learning at scale with H2O -- Large scale deep learning with H2O -- Gridsearch on H2O -- Deep learning and unsupervised pretraining -- Deep learning with theanets -- Autoencoders and unsupervised learning -- Autoencoders -- Summary -- Chapter 5: Deep Learning with TensorFlow -- TensorFlow installation -- TensorFlow operations -- GPU computing -- Linear regression with SGD -- A neural network from scratch in TensorFlow -- Machine learning on TensorFlow with SkFlow -- Deep learning with large files - incremental learning -- Keras and TensorFlow installation -- Convolutional Neural Networks in TensorFlow through Keras -- The convolution layer -- The pooling layer -- The fully connected layer -- CNN's with an incremental approach -- GPU Computing -- Summary -- Chapter 6: Classification and Regression Trees at Scale -- Bootstrap aggregation -- Random forest and extremely randomized forest -- Fast parameter optimization with randomized search -- Extremely randomized trees and large datasets

CART and boosting -- Gradient Boosting Machines -- max_depth -- learning_rate -- Subsample -- Faster GBM with warm_start -- Training and storing GBM models -- XGBoost -- XGBoost regression -- XGBoost and variable importance -- XGBoost streaming large datasets -- XGBoost model persistence -- Out-of-core CART with H2O -- Random forest and gridsearch on H2O -- Stochastic gradient boosting and gridsearch on H2O -- Summary -- Chapter 7: Unsupervised Learning at Scale -- Unsupervised methods -- Feature decomposition - PCA -- Randomized PCA -- Incremental PCA -- Sparse PCA -- PCA with H2O -- Clustering - K-means -- Initialization methods -- K-means assumptions -- Selection of the best K -- Scaling K-means - mini-batch -- K-means with H2O -- LDA -- Scaling LDA - memory, CPUs, and machines -- Summary -- Chapter 8: Distributed Environments - Hadoop and Spark -- From a standalone machine to a bunch of nodes -- Why do we need a distributed framework? -- Setting up the VM -- VirtualBox -- Vagrant -- Using the VM -- The Hadoop ecosystem -- Architecture -- HDFS -- MapReduce -- YARN -- Spark -- pySpark -- Summary -- Chapter 9: Practical Machine Learning with Spark -- Setting up the VM for this chapter -- Sharing variables across cluster nodes -- Broadcast read-only variables -- Accumulators write-only variables -- Broadcast and accumulators together - an example -- Data preprocessing in Spark -- JSON files and Spark DataFrames -- Dealing with missing data -- Grouping and creating tables in-memory -- Writing the preprocessed DataFrame or RDD to disk -- Working with Spark DataFrames -- Machine learning with Spark -- Spark on the KDD99 dataset -- Reading the dataset -- Feature engineering -- Training a learner -- Evaluating a learner's performance -- The power of the ML pipeline -- Manual tuning -- Cross-validation -- Final cleanup -- Summary

Appendix: Introduction to GPUs and Theano -- GPU computing -- Theano - parallel computing on the GPU -- Installing Theano -- Index  Read more...
Abstract: Cover -- Copyright -- Credits -- About the Authors -- About the Reviewers -- www.PacktPub.com -- Table of Contents -- Preface -- Chapter 1: First Steps to Scalability -- Explaining scalability in detail -- Making large scale examples -- Introducing Python -- Scale up with Python -- Scale out with Python -- Python for large scale machine learning -- Choosing between Python 2 and Python 3 -- Installing Python -- Step-by-step installation -- The installation of packages -- Package upgrades -- Scientific distributions -- Introducing Jupyter/IPython -- Python packages -- NumPy -- SciPy -- Pandas -- Scikit-learn -- The matplotlib package -- Gensim -- H2O -- XGBoost -- Theano -- TensorFlow -- The sknn library -- Theanets -- Keras -- Other useful packages to install on your system -- Summary -- Chapter 2: Scalable Learning in Scikit-learn -- Out-of-core learning -- Subsampling as a viable option -- Optimizing one instance at a time -- Building an out-of-core learning system -- Streaming data from sources -- Datasets to try the real thing yourself -- The first example - streaming the bike-sharing dataset -- Using pandas I/O tools -- Working with databases -- Paying attention to the ordering of instances -- Stochastic learning -- Batch gradient descent -- Stochastic gradient descent -- The Scikit-learn SGD implementation -- Defining SGD learning parameters -- Feature management with data streams -- Describing the target -- The hashing trick -- Other basic transformations -- Testing and validation in a stream -- Trying SGD in action -- Summary -- Chapter 3: Fast SVM Implementations -- Datasets to experiment with on your own -- The bike-sharing dataset -- The covertype dataset -- Support Vector Machines -- Hinge loss and its variants -- Understanding the Scikit-learn SVM implementation -- Pursuing nonlinear SVMs by subsampling

Achieving SVM at scale with SGD -- Feature selection by regularization -- Including non-linearity in SGD -- Trying explicit high-dimensional mappings -- Hyperparameter tuning -- Other alternatives for SVM fast learning -- Nonlinear and faster with Vowpal Wabbit -- Installing VW -- Understanding the VW data format -- Python integration -- A few examples using reductions for SVM and neural nets -- Faster bike-sharing -- The covertype dataset crunched by VW -- Summary -- Chapter 4: Neural Networks and Deep Learning -- The neural network architecture -- What and how neural networks learn -- Choosing the right architecture -- The input layer -- The hidden layer -- The output layer -- Neural networks in action -- Parallelization for sknn -- Neural networks and regularization -- Neural networks and hyperparameter optimization -- Neural networks and decision boundaries -- Deep learning at scale with H2O -- Large scale deep learning with H2O -- Gridsearch on H2O -- Deep learning and unsupervised pretraining -- Deep learning with theanets -- Autoencoders and unsupervised learning -- Autoencoders -- Summary -- Chapter 5: Deep Learning with TensorFlow -- TensorFlow installation -- TensorFlow operations -- GPU computing -- Linear regression with SGD -- A neural network from scratch in TensorFlow -- Machine learning on TensorFlow with SkFlow -- Deep learning with large files - incremental learning -- Keras and TensorFlow installation -- Convolutional Neural Networks in TensorFlow through Keras -- The convolution layer -- The pooling layer -- The fully connected layer -- CNN's with an incremental approach -- GPU Computing -- Summary -- Chapter 6: Classification and Regression Trees at Scale -- Bootstrap aggregation -- Random forest and extremely randomized forest -- Fast parameter optimization with randomized search -- Extremely randomized trees and large datasets

CART and boosting -- Gradient Boosting Machines -- max_depth -- learning_rate -- Subsample -- Faster GBM with warm_start -- Training and storing GBM models -- XGBoost -- XGBoost regression -- XGBoost and variable importance -- XGBoost streaming large datasets -- XGBoost model persistence -- Out-of-core CART with H2O -- Random forest and gridsearch on H2O -- Stochastic gradient boosting and gridsearch on H2O -- Summary -- Chapter 7: Unsupervised Learning at Scale -- Unsupervised methods -- Feature decomposition - PCA -- Randomized PCA -- Incremental PCA -- Sparse PCA -- PCA with H2O -- Clustering - K-means -- Initialization methods -- K-means assumptions -- Selection of the best K -- Scaling K-means - mini-batch -- K-means with H2O -- LDA -- Scaling LDA - memory, CPUs, and machines -- Summary -- Chapter 8: Distributed Environments - Hadoop and Spark -- From a standalone machine to a bunch of nodes -- Why do we need a distributed framework? -- Setting up the VM -- VirtualBox -- Vagrant -- Using the VM -- The Hadoop ecosystem -- Architecture -- HDFS -- MapReduce -- YARN -- Spark -- pySpark -- Summary -- Chapter 9: Practical Machine Learning with Spark -- Setting up the VM for this chapter -- Sharing variables across cluster nodes -- Broadcast read-only variables -- Accumulators write-only variables -- Broadcast and accumulators together - an example -- Data preprocessing in Spark -- JSON files and Spark DataFrames -- Dealing with missing data -- Grouping and creating tables in-memory -- Writing the preprocessed DataFrame or RDD to disk -- Working with Spark DataFrames -- Machine learning with Spark -- Spark on the KDD99 dataset -- Reading the dataset -- Feature engineering -- Training a learner -- Evaluating a learner's performance -- The power of the ML pipeline -- Manual tuning -- Cross-validation -- Final cleanup -- Summary

Appendix: Introduction to GPUs and Theano -- GPU computing -- Theano - parallel computing on the GPU -- Installing Theano -- Index





نظرات کاربران