دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: M. Teresa Fernández Abedul (editor)
سری:
ISBN (شابک) : 0128159324, 9780128159323
ناشر: Elsevier
سال نشر: 2019
تعداد صفحات: 368
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 18 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Laboratory Methods in Dynamic Electroanalysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روشهای آزمایشگاهی در الکتروآنالیز دینامیکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
روشهای آزمایشگاهی در الکتروآنالیز دینامیکی راهنمای مفیدی برای معرفی شیمیدانان تحلیلی به دنیای الکتروآنالیز با استفاده از روشهای ساده و کم هزینه است. از آنجایی که دستگاه های الکتروتحلیلی از سلول های الکتروشیمیایی معمولی (10-20 میلی لیتر) به سلول های فعلی (1-5 متر لیتر) با مواد مختلف مانند کاغذ منتقل شده اند، استراتژی های جالبی مانند نانوساختار الکترودها، سلول های میکروسیال و سنجش زیستی پدیدار شده اند. این کتاب روشهای دقیق و بهروز برای الکتروآنالیز ارائه میکند و روندهای اصلی در سلولها و الکترودهای الکتروشیمیایی، از جمله الکترودهای میکروسیال، دستگاههای الکتروشیمیایی مبتنی بر کاغذ، الکتروفورز ریزتراشه با تشخیص الکتروشیمیایی یکپارچه، نانوساختار الکترودها و نانوذرات به عنوان برچسب در سنجشهای زیستی را پوشش میدهد. و بیوسنینگ الکتروشیمیایی. تکنیکها و استراتژیها به روشی آسان برای درک، آموزشی، مبتنی بر تمرین ارائه میشوند و کتابشناسی منابع اطلاعاتی بیشتری را در اختیار خوانندگان قرار میدهد.
Laboratory Methods in Dynamic Electroanalysis is a useful guide to introduce analytical chemists to the world of electroanalysis using simple, low-cost methods. As electroanalytical devices have moved from conventional electrochemical cells (10-20 mL) to current cells (1-5 m L) with different materials such as paper, interesting strategies have emerged, such as nanostructuration of electrodes, microfluidic cells, and biosensing. This book provides detailed, up-to-date procedures for electroanalysis and covers the main trends in electrochemical cells and electrodes, including microfluidic electrodes, paper-based electrochemical devices, microchip electrophoresis with integrated electrochemical detection, nanostructuration of electrodes and nanoparticles as labels in bioassays, and electrochemical biosensing. Techniques and strategies are presented in an easy-to-understand, didactic, practice-based way, and a bibliography provides readers with additional sources of information.
Cover Laboratory Methods in Dynamic Electroanalysis Copyright Dedication Contributors Preface Acknowledgments 1 - Dynamic electroanalysis: an overview 1.1 Dynamic electroanalysis 1.2 Additional notes References Part I: Dynamic electroanalytical techniques 2 - Determination of ascorbic acid in dietary supplements by cyclic voltammetry 2.1 Background 2.2 Electrochemical cell 2.3 Chemicals and supplies 2.4 Hazards 2.5 Experimental procedure 2.5.1 Preparation of solutions 2.5.2 Characterization of the redox processes 2.5.2.1 Redox process of ascorbic acid 2.5.2.2 Scan rate study 2.5.2.3 pH study 2.5.2.4 Redox process of gallic acid 2.5.3 Calibration curve of ascorbic acid 2.5.4 Determination of ascorbic acid in a dietary supplement 2.6 Lab report 2.7 Additional notes 2.8 Assessment and discussion questions References 3 - Electrochemical behavior of the redox probe hexaammineruthenium(III) ([Ru(NH3)6]3+) using voltammetric techniques 3.1 Background 3.2 Electrochemical cell 3.3 Chemicals and supplies 3.4 Hazards 3.5 Experimental procedure 3.5.1 Preparation of solutions 3.5.2 Analytical signal and calibration curve obtained by cyclic voltammetry 3.5.3 Calibration curve obtained by differential pulse voltammetry 3.5.4 Calibration curve obtained by square wave voltammetry 3.6 Lab report 3.7 Additional notes 3.8 Assessment and discussion questions References 4 - Anodic stripping voltammetric determination of lead and cadmium with stencil-printed transparency electrodes 4.1 Background 4.2 Electrochemical cell design 4.3 Chemicals and supplies 4.4 Hazards 4.5 Experimental procedure 4.5.1 Solutions and sample preparation 4.5.2 Fabrication of the electrochemical cell 4.5.3 Electrochemical characterization of the electrodes using hexaammineruthenium(III) 4.5.4 Quantitation of the amount of lead and cadmium deposited on the electrode surface 4.5.5 Bismuth effect on lead and cadmium stripping currents 4.5.6 Analytical features of the sensor 4.5.7 Selectivity assessment 4.5.8 Determination of lead and cadmium in water samples 4.6 Lab report 4.7 Additional notes 4.8 Assessment and discussion questions References 5 - Adsorptive stripping voltammetry of indigo blue in a flow system 5.1 Background 5.2 Chemicals and supplies 5.3 Hazards 5.4 Flow injection analysis electrochemical system 5.5 Experimental procedures 5.5.1 Enzyme-linked immunosorbent assay procedure 5.5.2 Flow procedure and voltammetric detection 5.5.3 Electrochemical behavior of indigo 5.5.4 Calibration curve of IL-10 5.6 Lab report 5.7 Additional notes 5.8 Assessment and discussion questions References 6 - Enhancing electrochemical performance by using redox cycling with interdigitated electrodes 6.1 Background 6.2 Chemicals and supplies 6.3 Hazards 6.4 Electrochemical system setup 6.5 Experimental procedure 6.5.1 Electrode precleaning 6.5.2 Electrochemical measurements 6.5.3 Electrochemical behavior of redox systems by cyclic voltammetry 6.5.4 Interdigitated array microelectrodes performance by cyclic voltammetry 6.6 Lab report 6.7 Additional notes 6.8 Assessment and discussion questions References 7 - Amperometric detection of NADH using carbon-based electrodes 7.1 Background 7.2 Chemicals and supplies 7.3 Hazards 7.4 Experimental procedure 7.4.1 Preparation of solutions 7.4.2 Direct unmediated oxidation of NADH on graphite electrodes 7.4.3 Mediated oxidation of NADH 7.4.4 Amperometric measurement of NADH 7.5 Lab report 7.6 Additional notes 7.7 Assessment and discussion questions References 8 - Chronoamperometric determination of ascorbic acid on paper-based devices 8.1 Background 8.2 Electrochemical cell design 8.3 Chemicals and supplies 8.4 Hazards 8.5 Experimental procedure 8.5.1 Fabrication of the electrochemical cell 8.5.2 Choice of the potential step by cyclic voltammetry 8.5.3 Calibration curve with chronoamperometric readout 8.5.4 Determination of ascorbic acid in fruit juices 8.6 Lab report 8.7 Additional notes 8.8 Assessment and discussion questions References 9 - Electrochemical detection of melatonin in a flow injection analysis system 9.1 Background 9.2 Electrochemical thin-layer cell 9.3 Flow injection analysis system 9.4 Chemicals and supplies 9.5 Hazards 9.6 Experimental procedure 9.6.1 Preparation of solutions 9.6.2 Cyclic voltammetric measurements 9.6.2.1 Redox processes of melatonin 9.6.2.2 Scan rate study 9.6.3 Flow injection analysis with amperometric detection 9.6.3.1 Hydrodynamic curve 9.6.3.2 Effect of the flow rate 9.6.3.3 Precision studies 9.6.3.4 Calibration curve 9.6.3.5 Sample preparation and measurement 9.7 Lab report 9.8 Additional notes 9.9 Assessment and discussion questions References 10 - Batch injection analysis for amperometric determination of ascorbic acid at ruthenium dioxide screen-printed electrodes 10.1 Background 10.2 Chemicals and supplies 10.3 Hazards 10.4 Experimental procedure 10.4.1 Preparation of the BIA cell 10.4.2 Preparation of the electronic micropipette 10.4.3 Optimization of parameters that affect the analytical signal 10.4.3.1 Optimization of the potential of detection (hydrodynamic curve) 10.4.3.2 Optimization of speed and volume of injection 10.4.3.3 Effect of stirrer speed 10.4.4 Calibration plot of ascorbic acid 10.4.5 Interference evaluation 10.4.6 Determination of ascorbic acid in orange juices 10.5 Lab report 10.6 Additional notes 10.7 Assessment and discussion questions References 11 - Impedimetric aptasensor for determination of the antibiotic neomycin B 11.1 Background 11.2 Chemicals and supplies 11.3 Hazards 11.4 Experimental procedure 11.4.1 Electrode cleaning and pretreatment 11.4.2 Sensing phase preparation 11.4.2.1 Formation of mercaptopropionic acid self-assembled monolayer on the gold surface 11.4.2.2 Covalent binding of neomycin B to the mercaptopropionic acid self-assembled monolayer 11.4.2.3 Immobilization of the antineomycin receptor on the antibiotic-modified electrode surface 11.4.3 Sensing phase evaluation 11.4.4 Displacement assay 11.4.5 Data collection and analysis 11.4.6 Regeneration of the sensing phase 11.4.7 Selectivity evaluation 11.5 Lab report 11.6 Additional notes 11.7 Assessment and discussion questions References 12 - Electrochemical impedance spectroscopy for characterization of electrode surfaces: carbon nanotubes on gold electrodes 12.1 Background 12.2 Electrochemical cell 12.3 Chemicals and supplies 12.4 Hazards 12.5 Electrochemical procedure 12.5.1 Modification of electrodes 12.5.2 Cyclic voltammetry and electrochemical impedance spectroscopy measurements 12.6 Lab report 12.7 Additional notes 12.8 Assessment and discussion questions References Part II: Electroanalysis and microfluidics 13 - Single- and dual-channel hybrid PDMS/glass microchip electrophoresis device with amperometric detection 13.1 Background 13.2 Chemicals and supplies 13.3 Microchip fabrication 13.4 Microchip designs 13.5 Electrochemical detector design 13.6 Hazards 13.7 Experimental procedure 13.7.1 Electrophoretic separation in a single-channel microchip 13.7.2 Electrochemical detection in a dual-channel microchip 13.8 Lab report 13.9 Additional notes 13.10 Assessment and discussion questions References 14 - Analysis of uric acid and related compounds in urine samples by electrophoresis in microfluidic chips 14.1 Background 14.2 Electrophoresis system setup 14.3 Chemicals and supplies 14.4 Hazards 14.5 Experimental procedure 14.5.1 Preparation of solutions 14.5.2 Sample preparation 14.5.3 Electrophoretic procedure 14.5.3.1 Microchip pretreatment 14.5.3.2 Baseline stabilization 14.5.3.3 Unpinched injection 14.5.3.4 Separation and detection 14.5.4 General electrophoretic behavior 14.5.4.1 Buffer solution 14.5.4.2 Electrochemical detection 14.5.4.3 Separation and injection performance 14.5.5 Analytical parameters 14.5.6 Real sample analysis 14.6 Lab report 14.7 Additional notes 14.8 Assessment and discussion questions References 15 - Microchannel modifications in microchip reverse electrophoresis for ferrocene carboxylic acid determination 15.1 Background 15.2 Electrophoresis microchip 15.3 Chemicals and supplies 15.4 Hazards 15.5 Experimental procedure 15.5.1 Solutions and sample preparation 15.5.2 Dynamic coating of microchannels 15.5.3 Electrophoresis and electrochemical detection 15.5.4 Evaluation of the detection potential 15.5.5 Calibration curve 15.6 Lab report 15.7 Additional notes 15.8 Assessment and discussion questions References 16 - Integrated microfluidic electrochemical sensors to enhance automated flow analysis systems 16.1 Background 16.2 Flow injection analysis system setup 16.3 Chemicals and supplies 16.4 Hazards 16.5 Experimental procedure 16.5.1 Electrochemical procedures 16.5.1.1 Electrode precleaning 16.5.1.2 Amperometric measurements 16.5.2 Influence of the electrode material, carrier solution, and detection potential 16.5.3 Analytical parameters 16.5.4 Comparison of flow injection analysis systems: wall-jet versus microfluidic thin-layer flow cells 16.5.5 Paracetamol determination 16.5.5.1 Sample preparation 16.5.5.2 Sample measurement 16.6 Lab report 16.7 Additional notes 16.8 Assessment and discussion questions References 17 - Bienzymatic amperometric glucose biosensor 17.1 Background 17.2 Electrochemical setup 17.3 Chemicals and supplies 17.4 Hazards 17.5 Experimental procedure 17.5.1 Electrochemical study of ferrocene behavior 17.5.2 Construction of the amperometric glucose sensor. Evaluation of its analytical performance 17.5.3 Determination of glucose in real food samples 17.6 Lab report 17.7 Additional notes 17.8 Assessment and discussion questions References Part III: Bioelectroanalysis 18 - Determination of ethyl alcohol in beverages using an electrochemical enzymatic sensor 18.1 Background 18.2 Electrochemical setup 18.3 Chemicals and supplies 18.4 Hazards 18.5 Experimental procedure 18.5.1 Electrocatalytic detection of NADH on carbon paste electrodes modified with 2,8-dioxoadenosine 18.5.2 Construction of an amperometric ethanol sensor. Evaluation of its analytical performance 18.5.3 Determination of ethanol content in beer 18.6 Lab report 18.7 Additional notes 18.8 Assessment and discussion questions References 19 - Enzymatic determination of ethanol on screen-printed cobalt phthalocyanine/carbon electrodes 19.1 Background 19.2 Electrochemical cell 19.3 Chemical and supplies 19.4 Hazards 19.5 Experimental procedure 19.5.1 Solutions and sample preparation 19.5.2 Construction of the sensor 19.5.3 Electrochemical measurements 19.5.4 Optimization of the biosensor 19.5.5 Calibration and determination of ethanol in alcoholic beverages 19.6 Lab report 19.7 Additional notes 19.8 Assessment and discussion questions References 20 - Immunoelectroanalytical assay based on the electrocatalytic effect of gold labels on silver electrodeposition 20.1 Background 20.2 Electrochemical cells 20.3 Chemicals and supplies 20.2.1 Chemicals: 20.4 Hazards 20.5 Experimental procedures 20.5.1 Labeling of anti-HSA with sodium aurothiomalate 20.5.2 Electrode pretreatment 20.5.3 Recording of the analytical signal 20.5.4 Immunoassays 20.5.4.1 Noncompetitive immunoassay 20.5.4.2 Competitive immunoassay 20.6 Lab report 20.7 Additional notes 20.8 Assessment and discussion questions References 21 - Genosensor on gold films with enzymatic electrochemical detection of a SARS virus sequence 21.1 Background 21.2 Electrochemical cell 21.3 Chemicals and supplies 21.4 Hazards 21.5 Experimental procedures 21.5.1 Construction of the electrochemical cell 21.5.2 Gold sputtering 21.5.3 Hybridization assay 21.5.4 Electrochemical measurement 21.5.5 Effect of evaporation 21.5.6 Surface blocking 21.5.7 Analytical characteristics 21.6 Lab report 21.7 Additional notes 21.8 Assessment and discussion questions References 22 - Aptamer-based magnetoassay for gluten determination 22.1 Background 22.2 Chemical and supplies 22.3 Hazards 22.4 Experimental procedure 22.4.1 Modification of streptavidin-coated magnetic microbeads with 33-mer peptide 22.4.2 Competitive binding assay 22.4.3 Enzymatic reaction and electrochemical detection 22.4.4 Data collection and analysis 22.5 Lab report 22.6 Additional notes 22.7 Assessment and discussion questions References Part IV: Nanomaterials and electroanalysis 23.- Determination of lead with electrodes nanostructured with gold nanoparticles 23.1 Background 23.2 Electrochemical cell 23.3 Chemicals and supplies 23.4 Hazards 23.5 Experimental procedure 23.5.1 Solutions and sample preparation 23.5.2 Nanostructuration of the electrochemical cell 23.5.3 Electrochemical measurements 23.5.4 Identification of the underpotential deposition process 23.5.5 Calibration curve 23.5.6 Determination of lead in water samples 23.6 Lab report 23.7 Additional notes 23.8 Assessment and discussion questions References 24 - Electrochemical behavior of the dye methylene blue on screen-printed gold electrodes modified with carbon nanotubes 24.1 Background 24.2 Screen-printed gold electrodes 24.3 Chemicals and supplies 24.4 Hazards 24.5 Experimental procedure 24.5.1 Solutions and sample preparation 24.5.2 Nanostructuration of screen-printed gold electrodes 24.5.2.1 Dispersion of carbon nanotubes 24.5.2.2 Nanostructuration of screen-printed gold electrodes 24.5.3 Electrochemical behavior of methylene blue on AuSPEs and MWCNTs-AuSPEs 24.5.4 Accumulation of methylene blue on MWCNTs-AuSPEs 24.5.5 Optimization of the nanostructuration 24.5.5.1 Ratio of carbon nanotube dispersion/water 24.5.5.2 Volume of drop of carbon naotube dispersion 24.5.5.3 Time and temperature of the nanostructuration step 24.5.6 Calibration curve 24.6 Lab report 24.7 Additional notes 24.8 Assessment and discussion questions References Part V: Low-cost electroanalysis 25 - Determination of glucose with an enzymatic paper-based sensor 25.1 Background 25.2 Electrochemical cell design 25.3 Chemical and supplies 25.4 Hazards 25.5 Experimental procedure 25.5.1 Solutions and sample preparation 25.5.2 Fabrication of the electrochemical cell 25.5.3 Electrochemical measurements 25.5.4 Study of the electrochemical behavior of ferrocyanide 25.5.5 Construction of the biosensor and signal readout procedure 25.5.6 Optimization of the biosensor 25.5.7 Calibration and determination of glucose in beverages 25.6 Lab report 25.7 Additional notes 25.8 Assessment and discussion questions References 26 - Determination of arsenic (III) in wines with nanostructured paper-based electrodes 26.1 Background 26.2 Chemicals and supplies 26.3 Hazards 26.4 Experimental procedure 26.4.1 Fabrication of the electrochemical cell 26.4.2 Gold nanostructuration of the carbon paper-based electrode 26.4.3 Electrochemical characterization of As(III) by cyclic voltammetry using nanostructured paper-based devices 26.4.4 Calibration curve by chronoamperometric stripping and analytical features of the sensor 26.4.5 As(III) determination in white wines 26.5 Lab report 26.6 Additional notes 26.7 Assessment and discussion questions References 27 - Pin-based electrochemical sensor 27.1 Background 27.2 Electrochemical cell design 27.3 Chemicals and supplies 27.4 Hazards 27.5 Experimental procedure 27.5.1 Solutions and sample preparation 27.5.2 Fabrication of the electrochemical cell 27.5.3 Evaluation of the effect of the drying time 27.5.4 Assessment of the detection potential for glucose analysis 27.5.5 Construction of the biosensor and calibration curve of glucose 27.5.6 Study of the precision 27.5.7 Interference evaluation 27.5.8 Determination of glucose in real food samples 27.6 Lab report 27.7 Additional notes 27.8 Assessment and discussion questions References 28 - Flow injection electroanalysis with pins 28.1 Background 28.2 Flow injection analysis and electrochemical cell design 28.3 Chemical and supplies 28.4 Hazards 28.5 Experimental procedure 28.5.1 Fabrication of the electrochemical cell 28.5.2 Solutions and sample preparation 28.5.3 Hydrodynamic curve 28.5.4 Evaluation of the pin-based flow injection analysis system 28.5.5 Calibration curve and glucose determination in real beverage samples 28.6 Lab report 28.7 Additional notes 28.8 Assessment and discussion questions References 29 - Staple-based paper electrochemical platform for quantitative analysis 29.1 Background 29.2 Electrochemical setup 29.3 Chemicals and supplies 29.4 Hazards 29.5 Experimental procedure 29.5.1 Fabrication of the electrochemical platform 29.5.1.1 Staples pretreatment 29.5.1.2 Modification of staples with carbon ink 29.5.1.3 Design of the electrochemical cell (PDMS holder) 29.5.1.4 Wax-printed paper platform 29.5.2 Study of the analytical characteristics 29.5.2.1 Evaluation of the staple modification with carbon ink 29.5.2.2 Reproducibility 29.5.2.3 Calibration curve 29.6 Lab report 29.7 Additional notes 29.8 Assessment and discussion questions References Part VI: Multiplexed electroanalysis 30 - Simultaneous measurements with a multiplexed platform containing eight electrochemical cells 30.1 Background 30.2 Electrochemical platform 30.3 Chemical and supplies 30.4 Hazards 30.5 Experimental procedure 30.5.1 Preparation of solutions 30.5.2 Electrochemical measurements 30.5.3 Study of the electrochemical behavior of ferrocyanide and dopamine 30.5.4 Study of the inter- and intra-array reproducibility 30.5.5 Simultaneous calibration of ferrocyanide and dopamine 30.5.6 Simultaneous bioassays 30.6 Lab report 30.7 Additional notes 30.8 Assessment and discussion questions References 31 - Simultaneous detection of bacteria causing community-acquired pneumonia by genosensing 31.1 Background 31.2 Electrochemical cell design 31.3 Chemicals and supplies 31.4 Hazards 31.5 Experimental procedure 31.5.1 Preparation of solutions 31.5.2 Surface modification of dual screen-printed carbon electrodes 31.5.3 Hybridization reaction procedure 31.6 Lab report 31.7 Additional notes 31.8 Assessment and discussion questions References Part VII: Spectroelectrochemical techniques 32 - Electrochemiluminescence of tris (1,10-phenanthroline) ruthenium(II) complex with multipulsed amperometric detection 32.1 Background 32.2 Chemicals and supplies 32.3 Hazards 32.4 Experimental procedure 32.4.1 General setup of the equipment 32.4.2 EC and ECL characterization of [Ru(Phen)3]2+ by CV 32.4.3 Effect of the buffer composition on the ECL signal obtained by CV 32.4.4 Optimization of the multipulsed amperometric detection 32.4.4.1 Optimization of the excitation pulse potential (E2) 32.4.4.2 Optimization of the excitation pulse width (t2) 32.4.4.3 Optimization of the relaxation pulse potential (E1 and E3) 32.4.4.4 Optimization of the relaxation pulse width (t1 and t3) 32.4.5 Monitoring ECL emission (with multipulsed amperometric detection) with time 32.5 Lab report 32.6 Additional notes 32.7 Assessment and discussion questions References 33 - Detection of hydrogen peroxide by flow injection analysis based on electrochemiluminescence resonance energy transfer donor ... 33.1 Background 33.2 Chemicals and supplies 33.3 Hazards 33.4 Experimental procedure 33.4.1 Preparation of the flow system to obtain ECL signals 33.4.2 Injections of different mixtures of luminol, hydrogen peroxide, and fluorescein 33.4.3 Optimization of concentrations of luminol and fluorescein 33.4.3.1 Optimization of fluorescein concentration 33.4.3.2 Optimization of luminol concentration 33.4.4 Calibration plot for hydrogen peroxide 33.5 Lab report 33.6 Additional notes 33.7 Assessment and discussion questions References 34 - Determination of tris(bipyridine)ruthenium(II) based on electrochemical surface-enhanced raman scattering 34.1 Background 34.2 Spectroelectrochemical setup 34.3 Chemicals and supplies 34.4 Hazards 34.5 Experimental procedure 34.5.1 Raman spectra of [Ru(bpy)3]2+ on graphite and silver electrodes without electrochemical activation 34.5.2 Raman spectra of [Ru(bpy)3]2+ on silver electrodes with electrochemical activation 34.5.3 Calibration plot for [Ru(bpy)3]2+ through EC-SERS effect 34.6 Lab report 34.7 Additional notes 34.8 Assessment and discussion questions References Part VIII: General considerations 35 - Design of experiments at electroanalysis. Application to the optimization of nanostructured electrodes for sensor development 35.1 Background 35.2 Electrochemical cell 35.3 Chemicals and supplies Reagents and solutions Materials and instruments 35.4 Hazards 35.5 Experimental procedure 35.5.1 Preparation of the nanostructured electrodes 35.5.2 Design of experiments for in situ generation of gold nanoparticles 35.5.3 Optimization of the nanostructured electrodes 35.5.4 Determination of mercury in tap water 35.6 Lab report 35.7 Additional notes Glossary of terms 35.8 Assessment and discussion questions References 36 - Bibliographic resources in electroanalysis 36.1 Books and monographs 36.2 Journals 36.3 Web resources Index A B C D E F G H I L M N O P R S T U V W Back Cover