ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics

دانلود کتاب کشف دانش در داده های بزرگ از نجوم و رصد زمین: اخترژئوانفورماتیک

Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics

مشخصات کتاب

Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 0128191546, 9780128191545 
ناشر: Elsevier Science Ltd 
سال نشر: 2020 
تعداد صفحات: 461 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 73 مگابایت 

قیمت کتاب (تومان) : 28,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کشف دانش در داده های بزرگ از نجوم و رصد زمین: اخترژئوانفورماتیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب کشف دانش در داده های بزرگ از نجوم و رصد زمین: اخترژئوانفورماتیک



کشف دانش در داده های بزرگ از نجوم و رصد زمین: اخترژئوانفورماتیک شکاف بین نجوم و علم زمین را در زمینه کاربردها، تکنیک ها و اصول کلیدی داده های بزرگ پر می کند. یادگیری ماشین و محاسبات موازی به طور فزاینده‌ای در حال تبدیل شدن به بین رشته‌ای هستند، زیرا پدیده‌های Big Data در حال رایج شدن هستند. این کتاب بینشی در مورد گردش کار رایج و ابزارهای علم داده مورد استفاده برای داده های بزرگ در نجوم و علوم زمین ارائه می دهد. پس از ایجاد شباهت در جمع آوری داده ها، پیش پردازش و مدیریت، جنبه های علم داده در زمینه هر دو زمینه نشان داده می شود. نرم‌افزار، سخت‌افزار و الگوریتم‌های کلان داده مورد بررسی قرار می‌گیرند.

در نهایت، این کتاب بینشی در مورد علم در حال ظهور ارائه می دهد که داده ها و تخصص هر دو زمینه را در مطالعه تأثیر کیهان بر روی زمین و ساکنان آن ترکیب می کند.

  • به هر دو می پردازد. نجوم و علوم زمین به طور موازی، از منظر کلان داده
  • شامل اطلاعات مقدماتی، اصول کلیدی، برنامه های کاربردی و آخرین تکنیک ها
  • به خوبی پشتیبانی شده توسط محاسبات و فصل های علم اطلاعات برای معرفی دانش لازم در این زمینه ها

توضیحاتی درمورد کتاب به خارجی

Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics bridges the gap between astronomy and geoscience in the context of applications, techniques and key principles of big data. Machine learning and parallel computing are increasingly becoming cross-disciplinary as the phenomena of Big Data is becoming common place. This book provides insight into the common workflows and data science tools used for big data in astronomy and geoscience. After establishing similarity in data gathering, pre-processing and handling, the data science aspects are illustrated in the context of both fields. Software, hardware and algorithms of big data are addressed.

Finally, the book offers insight into the emerging science which combines data and expertise from both fields in studying the effect of cosmos on the earth and its inhabitants.

  • Addresses both astronomy and geosciences in parallel, from a big data perspective
  • Includes introductory information, key principles, applications and the latest techniques
  • Well-supported by computing and information science-oriented chapters to introduce the necessary knowledge in these fields


فهرست مطالب

Contents
List of Contributors
A Word from the BIG-SKY-EARTH Chair
Preface
	What's in This Book?
	Motivation and Scope
Acknowledgments
Part i Data
	1 Methodologies for Knowledge Discovery Processes in Context of AstroGeoInformatics
		1.1 Introduction
		1.2 Knowledge Discovery Processes
		1.3 Methodologies for Knowledge Discovery Processes
			1.3.1 First Attempt to Generalize Steps - Research-Based Methodology
			1.3.2 Industry-Based Standard - the Success of CRISP-DM
			1.3.3 Proprietary Methodologies - Usage of Specific Tools
			1.3.4 Methodologies in Big Data Context
		1.4 Methodologies in Action
			1.4.1 Standardization and Automation of Processes - Process Models
			1.4.2 Understanding Each Other - Semantic Models
				1.4.2.1 Example - EXPO
				1.4.2.2 Example - OntoDM
			1.4.3 Knowledge Discovery Processes in Astro/Geo Context
				1.4.3.1 Process Modeling Aspects
				1.4.3.2 Ontology-Related Aspects
		References
2 Historical Background of Big Data in Astro and Geo Context
	2.1 History of Big Data and Astronomy
		2.1.1 Big Data Before Printing and the Computer Age
		2.1.2 The Printing and Technological Renaissance Revolution
	2.2 Big Data and Meteorology: a Long History
		2.2.1 Early Meteorology
		2.2.2 Birth of International Synoptic Meteorology
		2.2.3 Next Step: Extension of Data Collection to the Entire Globe
	References
Part ii Information
	3 AstroGeoInformatics: From Data Acquisition to Further Application
		3.1 Introduction
		3.2 Background
		3.3 Remote Sensing
			3.3.1 Passive Sensing
			3.3.2 Active Sensing
		3.4 Big Data in Astro- and Geoinformatics
		3.5 From Data Acquisition to Applications
		3.6 Galileo Applications
		3.7 Galileo and Smart Cities
		3.8 Conclusion
		References
4 Synergy in Astronomy and Geosciences
	4.1 Introduction
		4.1.1 Basic Data Operations
		4.1.2 Coordinate Transformations
		4.1.3 Distance Measurements
		4.1.4 One-Dimensional Series
	4.2 State of the Art: VESPA Initiative of Bringing Together IVOA, IPDA (PDS), and OGC
		4.2.1 Standards and Software
		4.2.2 VESPA - Virtual Observatory for Planetary Science
	4.3 Case Studies: Interoperability of Virtual Observatory and Geographical Information Systems
		4.3.1 Geographical Data and Virtual Observatory
		4.3.2 Astronomical Data and Geographical Information Systems
	4.4 Perspectives and Possibilities
	4.5 Conclusions
	References
5 Surveys, Catalogues, Databases, and Archives of Astronomical Data
	5.1 Introduction
	5.2 From the First Star Photographic Catalogues to the Modern Digital Sky Surveys. Optical and Near-Infrared Astronomy
		5.2.1 First Important Visual Surveys and Catalogues
		5.2.2 Photographic Observations. Stellar and Extragalactic Surveys
		5.2.3 Spectral Photographic Surveys
		5.2.4 CCD Surveys
	5.3 New Life of Old Astronomical Data
		5.3.1 Digitization of Photographic Sky Surveys
		5.3.2 Scientific Objectives for Old Data Involving
	5.4 Multiwavelength Ground-Based and Space-Born Surveys, Archives, and Databases
		5.4.1 Gamma Ray Astronomy
		5.4.2 X-Ray Astronomy
		5.4.3 Ultraviolet Astronomy
		5.4.4 Mid- and Far-Infrared Astronomy
		5.4.5 Submillimeter/Millimeter Astronomy
		5.4.6 Centimeter/Meter/Decameter Radio Astronomy
	5.5 Multiwavelength Data Archives
	Acknowledgments
	References
6 Surveys, Catalogues, Databases/Archives, and State-of-the-Art Methods for Geoscience Data Processing
	6.1 Geospatial Surveying
		6.1.1 Collecting Geospatial Data Through in Situ, Aerial, and Satellite Surveying
		6.1.2 CEOS LPV Group & NASA Aeronet
		6.1.3 OGC
		6.1.4 International Standardization Organization
	6.2 Geospatial Archives, Catalogs, and Databases
		6.2.1 International Archives, Catalogs, and Databases
			6.2.1.1 UNOOSA
			6.2.1.2 CEOS
			6.2.1.3 GEO
			6.2.1.4 INSPIRE Directive
			6.2.1.5 Copernicus
			6.2.1.6 Galileo and EGNOS
			6.2.1.7 JRC
			6.2.1.8 ESA
		6.2.2 National Geospatial Catalogues and Databases
			6.2.2.1 CNES
			6.2.2.2 CSA
			6.2.2.3 CSIRO
			6.2.2.4 DLR
			6.2.2.5 INPE
			6.2.2.6 ISRO
			6.2.2.7 JAXA
			6.2.2.8 NASA, USGS, NOAA
			6.2.2.9 RADI
			6.2.2.10 Roscosmos
		6.2.3 Proprietary Geospatial Databases/Catalogues/Archives
	6.3 Geoinformatics
		6.3.1 Definition and Subject of Geoinformatics
		6.3.2 Big Data in Geoinformatics - State of the Art and Prospects
		6.3.3 Challenges with 4V (Volume, Variety, Velocity, and Value) of the Geospatial and EO Big Data
		6.3.4 HPC Computing in Geoinformatics. Simulations, Visualization, and Animations
			6.3.4.1 NASA Earth Observations - NEO (https://neo.sci.gsfc.nasa.gov/)
			6.3.4.2 COPERNICUS Data and Information Access Services - DIAS
			6.3.4.3 ESA Thematic Exploitation Platforms - TEPs
	6.4 State-of-the-Art Methods for Hyperspectral Image Processing
		6.4.1 Spectral Imaging Types
		6.4.2 Hyperspectral Image Transformation Methods
			6.4.2.1 Fourier Transform (FT)
			6.4.2.2 Short-Time Fourier Transform (STFT)
			6.4.2.3 Principal Component Analysis (PCA) and Karhunen-Loève Transform (KLT)
			6.4.2.4 Wavelet Transform (WT)
		6.4.3 Hyperspectral Image Classification Methods
			6.4.3.1 Image Fusion
			6.4.3.2 Statistics-Based Techniques
			6.4.3.3 Three-Dimensional Spatial-Spectral Methods
			6.4.3.4 Learning Methods
		6.4.4 Hyperspectral Image Denoising Methods
			6.4.4.1 Classical Approaches
			6.4.4.2 Penalty Methods
			6.4.4.3 Linear Transformation Techniques
		6.4.5 Dimensionality Reduction Methods for Hyperspectral Images
	6.5 Conclusive Remarks
	6.6 List of Abbreviations
	Acknowledgments
	References
		Internet Sources
7 High-Performance Techniques for Big Data Processing
	7.1 Introduction
	7.2 Compute Architectures
		7.2.1 Cache-Based Systems
		7.2.2 Multicore Systems
		7.2.3 Manycore Systems
		7.2.4 Other Architectures
	7.3 Distributed Systems
		7.3.1 Clusters
		7.3.2 Cloud Computing
	7.4 Storage and Data Management
		7.4.1 High-Performance Storage and I/O
		7.4.2 Big Data Storage
	7.5 Assessing Performance
		7.5.1 Compute Metrics: Moore's Law, Floating Point Performance, and Bandwidth
		7.5.2 Data Metrics: the Five Vs
		7.5.3 Benchmarking
		7.5.4 Performance Modeling
		7.5.5 Performance Analysis
	7.6 High-Performance Data Analytics
	7.7 Concluding Remarks on HPC, Big Data, and Their Convergence
	Acknowledgment
	References
8 Query Processing and Access Methods for Big Astro and Geo Databases
	8.1 Big Data Management
	8.2 Query Processing Steps
	8.3 Access Methods
	8.4 Query Optimization
	8.5 From Big Data Management to Big Data Analytics and Vice Versa
		8.5.1 Open Issues in the Intersection of Big Data Management and Big Data Analytics of Geo and Astro Data
	8.6 Discussion and Outlook
	References
9 Real-Time Stream Processing in Astronomy
	9.1 Introduction
	9.2 Event Processing Concepts
		9.2.1 Tools and Differences
		9.2.2 Esper Versus Drools
	9.3 Application of Event Processing to Astronomy
		9.3.1 Esper EPL
	9.4 Conclusion
	Acknowledgment
	References
Part iii Knowledge
	10 Time Series
		10.1 Introduction
		10.2 Basics of Time Series
		10.3 Early Agnostic Time-Domain Studies
		10.4 Longer Time Series With Uniform Passbands
		10.5 Features
			10.5.1 Dimensionality Reduction
		10.6 Period Finding
		10.7 Early Characterization/Classification
		10.8 Classification Using CNNs
		10.9 RNNs, LSTMs, etc.
		10.10 Availability of Libraries
		10.11 Real Time Aspects
		10.12 Topics not Adequately Covered
		Abbreviations
		Acknowledgments
		References
11 Advanced Time Series Analysis of Generally Irregularly Spaced Signals: Beyond the Oversimplified Methods
	11.1 Introduction
	11.2 Statistical Properties of the Functions of (Correlated) Parameters of the LS Fits
		11.2.1 Least-Squares Method: Test Functions
		11.2.2 Linear Least Squares
		11.2.3 Influence of Deviations of Coefficients
		11.2.4 Linear Approximation
		11.2.5 Linearization
		11.2.6 Statistical Properties of Functions of Coefficients
		11.2.7 Accuracy of the Derivative and Moments of Crossings
	11.3 Statistically Optimal Number of Parameters
		11.3.1 "Esthetic" (User-Defined)
		11.3.2 Analysis of Variance (ANOVA)
		11.3.3 "Best Accuracy" and Related Estimates
	11.4 Nonlinear LS Method and Differential Corrections
	11.5 Nonunique Minimum of the Test Function
		11.5.1 Bootstrap Method
		11.5.2 Determination of Times of Minima/Maxima (ToM)
	11.6 Periodogram Analysis: Parametric Versus Nonparametric Methods
		11.6.1 From Time to Phase
		11.6.2 "Parametric" ("Point-Curve") Methods
		11.6.3 "Nonparametric" ("Point-Point") Methods
	11.7 What Is the "Orthodox" Fourier Transform for Discrete Data?
		11.7.1 LS-Based DFT
	11.8 Periodogram Analysis of Signals With Aperiodic or Periodic Trends: When Detrending and Prewhitening Lead to Generally Wrong Results
	11.9 Analysis of Multiperiodic, Multiharmonic, and Multishift Signals
	11.10 Running Approximations
		11.10.1 General Expressions
		11.10.2 Running Approximations and Scalegram Analysis for Irregularly Spaced Data
		11.10.3 Running Sines
		11.10.4 Wavelet Analysis
	11.11 Moments of Characteristic Points (O-C Analysis)
		11.11.1 Period Determination
		11.11.2 Period Changes
	11.12 Autocorrelation and Cross-Correlation Analysis
		11.12.1 Continuous and Discrete Regular Signals
		11.12.2 Bias of ACF due to Trend
		11.12.3 Irregularly Spaced Signals
	11.13 Principal Component Analysis and Related Methods
		11.13.1 Principal Component Analysis: Multichannel Signals
		11.13.2 Case of Noisy Channels of Simultaneous Signals
		11.13.3 Singular Spectrum Analysis (SSA)
		11.13.4 Effective Amplitudes of Low, Fast, and Noise Variability
	11.14 Conclusions
	Acknowledgments
	References
12 Learning in Big Data: Introduction to Machine Learning
	12.1 Brief History of Machine Learning
		12.1.1 Introduction
		12.1.2 The Modern History of Artificial Intelligence and ML
		12.1.3 What Is Learning?
		12.1.4 Why Use Machine Learning Instead of Traditional Statistics?
	12.2 Types of Learning
		12.2.1 Supervised Learning
		12.2.2 Unsupervised Learning
		12.2.3 Semisupervised Learning
		12.2.4 Reinforcement Learning
		12.2.5 Active Learning
	12.3 Machine Learning Algorithms
		12.3.1 Naive Bayes Classifier
		12.3.2 k-Nearest Neighbors
		12.3.3 Support Vector Machine
		12.3.4 Random Forest
		12.3.5 Artificial Neural Network
		12.3.6 Multilayer Perceptron
		12.3.7 Dimensionality Reduction
	12.4 Machine Learning in Astronomy and Geosciences
		12.4.1 Case Studies in Astronomy
			12.4.1.1 Object Classification
				12.4.1.1.1 Star Galaxy Classification
				12.4.1.1.2 Galaxy Morphology
			12.4.1.2 Photometric Redshift
			12.4.1.3 Data Mining Software and Tools
		12.4.2 Case Studies in Geoscience
		12.4.3 Simple Case Study in Geology: Supervised Classification of Lithology
		12.4.4 Common Properties
	12.5 Scalable Machine Learning Algorithms
		12.5.1 What Is a Scalable Machine Learning Algorithm?
		12.5.2 Scalable Clustering
			12.5.2.1 Hierarchical Methods
			12.5.2.2 Density-Based Methods
			12.5.2.3 Grid-Based Methods
		12.5.3 Scalable Prediction: Classification and Regression
		12.5.4 Scalable Pattern Mining
	12.6 Scalable ML Frameworks
		12.6.1 Apache Spark
			12.6.1.1 Components of Apache Spark
		12.6.2 Flink ML
	12.7 Inference and Learning in Astronomy and Geosciences
	12.8 Summary
	References
13 Deep Learning - an Opportunity and a Challenge for Geo- and Astrophysics
	13.1 Introduction
	13.2 The Difference Between Shallow Learning and Deep Learning
	13.3 Why Is Deep Learning a Good Fit for the Data Science Problems in Astro- and Geophysics
	13.4 Deep Learning Models
		13.4.1 Convolutional Neural Networks
		13.4.2 Recurrent Neural Networks
		13.4.3 Generative Models
			13.4.3.1 Variational Autoencoders
			13.4.3.2 Generative Adversarial Networks
	References
14 Astro- and Geoinformatics - Visually Guided Classification of Time Series Data
	14.1 Introduction
	14.2 The MESSENGER Data
	14.3 System Architecture
		14.3.1 Scalability
		14.3.2 Indexing Time Series With Apache Lucene
		14.3.3 Related Pattern Search in Signal Data
	14.4 Visual Interface
		14.4.1 Large-Scale Signal Visualization
		14.4.2 Finding Related Signal Patterns
		14.4.3 Signal Annotation
	14.5 Time Series Preprocessing
		14.5.1 Normalization of Time Series
		14.5.2 Stationarity of Time Series
		14.5.3 Trends in Time Series
		14.5.4 Periodicity and Seasonality in Time Series
	14.6 Time Series Representation
		14.6.1 PAA
		14.6.2 SAX
		14.6.3 Piecewise Linear Representation
		14.6.4 Windowed Approach to Time Series
	14.7 Time Series Similarity
	14.8 Pattern Mining in Time Series
		14.8.1 Outlier Detection in Time Series
		14.8.2 Frequent Patterns
		14.8.3 Surprising Patterns
	14.9 Time Series Modeling and Classification
		14.9.1 Time Series Forecasting
		14.9.2 Classification and Clustering of Unsegmented Time Series
		14.9.3 Classification on Segmented Time Series
	14.10 Conclusions
	References
15 When Evolutionary Computing Meets Astro- and Geoinformatics
	15.1 Introduction
	15.2 The Optimization Problem
		15.2.1 Standard Formulation
		15.2.2 Types of Optimization Problems
			15.2.2.1 The Number of Decision Makers
			15.2.2.2 The Type of the Decision Variables
			15.2.2.3 The Number of Constraints
			15.2.2.4 The Number of Objective Functions
			15.2.2.5 The Linearity
			15.2.2.6 The Uncertainty Tied to the Optimization Model
		15.2.3 The Multiobjective Optimization Problem
	15.3 Evolutionary Computation
		15.3.1 Basic Structure of an Evolutionary Algorithm
		15.3.2 Evolution Operators
			15.3.2.1 Selection
			15.3.2.2 Cross-Over
			15.3.2.3 Mutation
	15.4 Evolutionary Computing Metaheuristics
		15.4.1 Genetic Algorithms
		15.4.2 Evolutionary Strategy
		15.4.3 Evolutionary Programming
		15.4.4 Genetic Programming
		15.4.5 Other Evolutionary Algorithms and Bio-Inspired Approaches
			15.4.5.1 Differential Evolution
			15.4.5.2 Coevolutionary Algorithms
			15.4.5.3 Swarm Intelligence
			15.4.5.4 Artificial Immune Systems
	15.5 Parallel Evolutionary Computing Metaheuristics for Big Data
	15.6 Practical Applications of Evolutionary Computing Metaheuristics in the Context of Astro- and Geoinformatics
	15.7 Discussion and Conclusions
	Acknowledgment
	References
Part iv Wisdom
	16 Multiwavelength Extragalactic Surveys: Examples of Data Mining
		16.1 Introduction
		16.2 The Automated Morphological Classification for the SDSS Galaxies
		16.3 Zone of Avoidance of the Milky Way
		16.4 Flux Variability of the Blazar 3C 454.3
		References
17 Applications of Big Data in Astronomy and Geosciences: Algorithms for Photographic Images Processing and Error Elimination
	17.1 Flatbed Scanners as Digitizers for Astronomic Photographic Material
	17.2 Algorithm of Correction for Scanner Errors
	17.3 Big Photographic Data and Their Errors
	Acknowledgments
	References
18 Big Astronomical Datasets and Discovery of New Celestial Bodies in the Solar System in Automated Mode by the CoLiTec Software
	18.1 Introduction
	18.2 Big Astronomical Data Processing
	18.3 Summary
	References
19 Big Data for the Magnetic Field Variations in Solar-Terrestrial Physics and Their Wavelet Analysis
	19.1 Introduction to Big Magnetic Data in Solar-Terrestrial Physics
	19.2 Mechanism of Generating Strong Geomagnetic Storms (Long-Period Geomagnetic Field Variations)
		19.2.1 The Big Picture of Solar-Terrestrial Physics - Quiet and Disturbed Geomagnetic Phenomena
		19.2.2 Geomagnetic Storms
		19.2.3 Ground Geomagnetic Field, and Geomagnetic Activity Index During a Storm
			19.2.3.1 The Dst Index During the 2003 Storm
		19.2.4 Ionospheric Parameters From Ionospheric Sounding Stations
			19.2.4.1 Data About the Parameters of the Ionospheric Plasma
		19.2.5 Emergence of Higher-Frequency Modes in the Ionospheric Parameters and in the IMF Which Are Related to the Ground Geomagnetic Field Variations
		19.2.6 The Strong Geomagnetic Storms in 2003 and 2017 to Be Analyzed
			19.2.6.1 The Storm in 2003
			19.2.6.2 The Storm on 7 and 8 September 2017
		19.2.7 Acquired Data for Short-Period Variations of the Geomagnetic Field, the Ionospheric Parameters, and the IMF
		19.2.8 Data About the Strongly Disturbed Geomagnetic Field in October and November 2003 and September 2017
			19.2.8.1 The H Component of the Geomagnetic Data From the Panagyurishte (PAG) Observatory
			19.2.8.2 The DS Index From the Surlary (SUA) Geomagnetic Data
	19.3 Experiments With Wavelet Analysis and Conclusions
		19.3.1 References on Applications of Wavelet Analysis to Geomagnetism
		19.3.2 Experiments With Data on a Quiet Day, 28 July 2018
			19.3.2.1 Visualization of the Wavelet Analysis
			19.3.2.2 Experiments With Balchik Geomagnetic Data, 28 July 2018, 1 Second Data
			19.3.2.3 Experiment With SUA Geomagnetic Data on 28 July 2018
		19.3.3 Experiments With Data for the Geomagnetic Storm on 7 and 8 September 2017
			19.3.3.1 The Dst for the Period 7-10 September 2017
			19.3.3.2 Experiments With Geomagnetic Data From PAG, 7-10 September 2017, 1 min Data
			19.3.3.3 Experiments With Ionospheric Data From Athens, 7-10 September 2017, 5 min Data
			19.3.3.4 Experiments With IMF Data From ACE Satellite, 7-10 September 2017, 4 min Data
		19.3.4 Experiments With Data for the 2003 Strong Geomagnetic Storm
			19.3.4.1 Experiments With Geomagnetic Data From SUA, on 28 and 29 October 2003
			19.3.4.2 Experiments With Spline Smoothing of Dst
			19.3.4.3 Experiments With IMF Data, on 28 and 29 October 2003, 4 min Data
	19.4 Conclusions
	Acknowledgments
	19.A Wavelet Analysis and Its Applications to Geomagnetic Data
		19.A.1 Technical Stuff
		19.A.2 CWT of Some Simple Functions
	References
20 International Database of Neutron Monitor Measurements: Development and Applications
	20.1 Introduction
	20.2 The Neutron Monitor Database (NMDB)
		20.2.1 The Need for NMDB
		20.2.2 The NMDB Database
		20.2.3 Data Contribution and Dissemination
	20.3 Applications
		20.3.1 Ground Level Enhancements (GLEs) - Detection and Characterization
		20.3.2 Evaluation of the Radiation Effects on Electronics and Health
		20.3.3 Space Weather Nowcast and Forecast
	20.4 Summary and Outlook
	Acknowledgments
	References
21 Monitoring the Earth Ionosphere by Listening to GPS Satellites
	21.1 Introduction
	21.2 The Determination and Procedure Transformation of the Ionosphere Parameters With GNSS Observations
	21.3 Recovery of the Spatial State of the Ionosphere
		21.3.1 Restrictions and Assumptions for Use of the GNSS Measurements to Restore the Ionization Field
		21.3.2 Description of the Method for Determining Ionization Using STEC
		21.3.3 Results of the Experimental Restoration of the Changes in the Atmosphere Ionization
		21.3.4 Algorithm of the Ionization Field Change Restoration Using the Approximation of the Change in Time of the Coefficients of the Polynomial From Numerous Arguments
	21.4 Conclusion
	References
22 Exploitation of Big Real-Time GNSS Databases for Weather Prediction
	22.1 Introduction
	22.2 Influence of Neutral Atmosphere on Results of Range Finding Observations of Artificial Satellites
	22.3 Taking Atmospheric Delay Into Account Using Modern Satellite Technology for Coordinate Support in Real-Time
	22.4 Use of Modern Satellite Technology in Meteorology
	22.5 Conclusions
	References
23 Application of Databases Collected in Ionospheric Observations by VLF/LF Radio Signals
	23.1 Introduction
	23.2 Experimental Setup and Observations
		23.2.1 Global Experimental Setups
		23.2.2 Example of VLF/LF Receiver and Collected Data
	23.3 Application of Databases in Detections of Astrophysical and Geophysical Events
		23.3.1 Sources of the Low Ionospheric Perturbations
		23.3.2 Detections of the Low Ionospheric Perturbations
			23.3.2.1 Time-Domain Analyses
			23.3.2.2 Frequency-Domain Analyses
	23.4 Application of Databases in Modeling Low Ionospheric Plasma Parameters
		23.4.1 Modeling of Low Ionospheric Plasma Parameters
		23.4.2 Example of VLF/LF Database Application in Modeling
			23.4.2.1 Numerical Determination of Wait's Parameters
			23.4.2.2 Analytical Calculation of Electron Density
	23.5 Practical Applications
		23.5.1 Natural Disasters
			23.5.1.1 Earthquakes
			23.5.1.2 Cyclones
		23.5.2 Telecommunication
	23.6 Summary
	Acknowledgment
	References
24 Influence on Life Applications of a Federated Astro-Geo Database
	24.1 Introduction
		24.1.1 History of the Influence of Geophysical Parameters on Health
	24.2 Meteorology and Climate (Temperature, Humidity, etc.) and Application to Disease Propagation
	24.3 Influence of Extraterrestrial Sources: Solar Activity, Galactic Cosmic Rays, and Geomagnetism
	24.4 Solar UV and Life
	24.5 Applications to Agriculture
	24.6 Conclusions: Future of Space Observations, Biodiversity, and Astrobiology
	References
Index




نظرات کاربران