دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Petr Skoda (editor). Fathalrahman Adam (editor)
سری:
ISBN (شابک) : 0128191546, 9780128191545
ناشر: Elsevier Science Ltd
سال نشر: 2020
تعداد صفحات: 461
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 73 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کشف دانش در داده های بزرگ از نجوم و رصد زمین: اخترژئوانفورماتیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کشف دانش در داده های بزرگ از نجوم و رصد زمین: اخترژئوانفورماتیک شکاف بین نجوم و علم زمین را در زمینه کاربردها، تکنیک ها و اصول کلیدی داده های بزرگ پر می کند. یادگیری ماشین و محاسبات موازی به طور فزایندهای در حال تبدیل شدن به بین رشتهای هستند، زیرا پدیدههای Big Data در حال رایج شدن هستند. این کتاب بینشی در مورد گردش کار رایج و ابزارهای علم داده مورد استفاده برای داده های بزرگ در نجوم و علوم زمین ارائه می دهد. پس از ایجاد شباهت در جمع آوری داده ها، پیش پردازش و مدیریت، جنبه های علم داده در زمینه هر دو زمینه نشان داده می شود. نرمافزار، سختافزار و الگوریتمهای کلان داده مورد بررسی قرار میگیرند.
در نهایت، این کتاب بینشی در مورد علم در حال ظهور ارائه می دهد که داده ها و تخصص هر دو زمینه را در مطالعه تأثیر کیهان بر روی زمین و ساکنان آن ترکیب می کند.
Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics bridges the gap between astronomy and geoscience in the context of applications, techniques and key principles of big data. Machine learning and parallel computing are increasingly becoming cross-disciplinary as the phenomena of Big Data is becoming common place. This book provides insight into the common workflows and data science tools used for big data in astronomy and geoscience. After establishing similarity in data gathering, pre-processing and handling, the data science aspects are illustrated in the context of both fields. Software, hardware and algorithms of big data are addressed.
Finally, the book offers insight into the emerging science which combines data and expertise from both fields in studying the effect of cosmos on the earth and its inhabitants.
Contents List of Contributors A Word from the BIG-SKY-EARTH Chair Preface What's in This Book? Motivation and Scope Acknowledgments Part i Data 1 Methodologies for Knowledge Discovery Processes in Context of AstroGeoInformatics 1.1 Introduction 1.2 Knowledge Discovery Processes 1.3 Methodologies for Knowledge Discovery Processes 1.3.1 First Attempt to Generalize Steps - Research-Based Methodology 1.3.2 Industry-Based Standard - the Success of CRISP-DM 1.3.3 Proprietary Methodologies - Usage of Specific Tools 1.3.4 Methodologies in Big Data Context 1.4 Methodologies in Action 1.4.1 Standardization and Automation of Processes - Process Models 1.4.2 Understanding Each Other - Semantic Models 1.4.2.1 Example - EXPO 1.4.2.2 Example - OntoDM 1.4.3 Knowledge Discovery Processes in Astro/Geo Context 1.4.3.1 Process Modeling Aspects 1.4.3.2 Ontology-Related Aspects References 2 Historical Background of Big Data in Astro and Geo Context 2.1 History of Big Data and Astronomy 2.1.1 Big Data Before Printing and the Computer Age 2.1.2 The Printing and Technological Renaissance Revolution 2.2 Big Data and Meteorology: a Long History 2.2.1 Early Meteorology 2.2.2 Birth of International Synoptic Meteorology 2.2.3 Next Step: Extension of Data Collection to the Entire Globe References Part ii Information 3 AstroGeoInformatics: From Data Acquisition to Further Application 3.1 Introduction 3.2 Background 3.3 Remote Sensing 3.3.1 Passive Sensing 3.3.2 Active Sensing 3.4 Big Data in Astro- and Geoinformatics 3.5 From Data Acquisition to Applications 3.6 Galileo Applications 3.7 Galileo and Smart Cities 3.8 Conclusion References 4 Synergy in Astronomy and Geosciences 4.1 Introduction 4.1.1 Basic Data Operations 4.1.2 Coordinate Transformations 4.1.3 Distance Measurements 4.1.4 One-Dimensional Series 4.2 State of the Art: VESPA Initiative of Bringing Together IVOA, IPDA (PDS), and OGC 4.2.1 Standards and Software 4.2.2 VESPA - Virtual Observatory for Planetary Science 4.3 Case Studies: Interoperability of Virtual Observatory and Geographical Information Systems 4.3.1 Geographical Data and Virtual Observatory 4.3.2 Astronomical Data and Geographical Information Systems 4.4 Perspectives and Possibilities 4.5 Conclusions References 5 Surveys, Catalogues, Databases, and Archives of Astronomical Data 5.1 Introduction 5.2 From the First Star Photographic Catalogues to the Modern Digital Sky Surveys. Optical and Near-Infrared Astronomy 5.2.1 First Important Visual Surveys and Catalogues 5.2.2 Photographic Observations. Stellar and Extragalactic Surveys 5.2.3 Spectral Photographic Surveys 5.2.4 CCD Surveys 5.3 New Life of Old Astronomical Data 5.3.1 Digitization of Photographic Sky Surveys 5.3.2 Scientific Objectives for Old Data Involving 5.4 Multiwavelength Ground-Based and Space-Born Surveys, Archives, and Databases 5.4.1 Gamma Ray Astronomy 5.4.2 X-Ray Astronomy 5.4.3 Ultraviolet Astronomy 5.4.4 Mid- and Far-Infrared Astronomy 5.4.5 Submillimeter/Millimeter Astronomy 5.4.6 Centimeter/Meter/Decameter Radio Astronomy 5.5 Multiwavelength Data Archives Acknowledgments References 6 Surveys, Catalogues, Databases/Archives, and State-of-the-Art Methods for Geoscience Data Processing 6.1 Geospatial Surveying 6.1.1 Collecting Geospatial Data Through in Situ, Aerial, and Satellite Surveying 6.1.2 CEOS LPV Group & NASA Aeronet 6.1.3 OGC 6.1.4 International Standardization Organization 6.2 Geospatial Archives, Catalogs, and Databases 6.2.1 International Archives, Catalogs, and Databases 6.2.1.1 UNOOSA 6.2.1.2 CEOS 6.2.1.3 GEO 6.2.1.4 INSPIRE Directive 6.2.1.5 Copernicus 6.2.1.6 Galileo and EGNOS 6.2.1.7 JRC 6.2.1.8 ESA 6.2.2 National Geospatial Catalogues and Databases 6.2.2.1 CNES 6.2.2.2 CSA 6.2.2.3 CSIRO 6.2.2.4 DLR 6.2.2.5 INPE 6.2.2.6 ISRO 6.2.2.7 JAXA 6.2.2.8 NASA, USGS, NOAA 6.2.2.9 RADI 6.2.2.10 Roscosmos 6.2.3 Proprietary Geospatial Databases/Catalogues/Archives 6.3 Geoinformatics 6.3.1 Definition and Subject of Geoinformatics 6.3.2 Big Data in Geoinformatics - State of the Art and Prospects 6.3.3 Challenges with 4V (Volume, Variety, Velocity, and Value) of the Geospatial and EO Big Data 6.3.4 HPC Computing in Geoinformatics. Simulations, Visualization, and Animations 6.3.4.1 NASA Earth Observations - NEO (https://neo.sci.gsfc.nasa.gov/) 6.3.4.2 COPERNICUS Data and Information Access Services - DIAS 6.3.4.3 ESA Thematic Exploitation Platforms - TEPs 6.4 State-of-the-Art Methods for Hyperspectral Image Processing 6.4.1 Spectral Imaging Types 6.4.2 Hyperspectral Image Transformation Methods 6.4.2.1 Fourier Transform (FT) 6.4.2.2 Short-Time Fourier Transform (STFT) 6.4.2.3 Principal Component Analysis (PCA) and Karhunen-Loève Transform (KLT) 6.4.2.4 Wavelet Transform (WT) 6.4.3 Hyperspectral Image Classification Methods 6.4.3.1 Image Fusion 6.4.3.2 Statistics-Based Techniques 6.4.3.3 Three-Dimensional Spatial-Spectral Methods 6.4.3.4 Learning Methods 6.4.4 Hyperspectral Image Denoising Methods 6.4.4.1 Classical Approaches 6.4.4.2 Penalty Methods 6.4.4.3 Linear Transformation Techniques 6.4.5 Dimensionality Reduction Methods for Hyperspectral Images 6.5 Conclusive Remarks 6.6 List of Abbreviations Acknowledgments References Internet Sources 7 High-Performance Techniques for Big Data Processing 7.1 Introduction 7.2 Compute Architectures 7.2.1 Cache-Based Systems 7.2.2 Multicore Systems 7.2.3 Manycore Systems 7.2.4 Other Architectures 7.3 Distributed Systems 7.3.1 Clusters 7.3.2 Cloud Computing 7.4 Storage and Data Management 7.4.1 High-Performance Storage and I/O 7.4.2 Big Data Storage 7.5 Assessing Performance 7.5.1 Compute Metrics: Moore's Law, Floating Point Performance, and Bandwidth 7.5.2 Data Metrics: the Five Vs 7.5.3 Benchmarking 7.5.4 Performance Modeling 7.5.5 Performance Analysis 7.6 High-Performance Data Analytics 7.7 Concluding Remarks on HPC, Big Data, and Their Convergence Acknowledgment References 8 Query Processing and Access Methods for Big Astro and Geo Databases 8.1 Big Data Management 8.2 Query Processing Steps 8.3 Access Methods 8.4 Query Optimization 8.5 From Big Data Management to Big Data Analytics and Vice Versa 8.5.1 Open Issues in the Intersection of Big Data Management and Big Data Analytics of Geo and Astro Data 8.6 Discussion and Outlook References 9 Real-Time Stream Processing in Astronomy 9.1 Introduction 9.2 Event Processing Concepts 9.2.1 Tools and Differences 9.2.2 Esper Versus Drools 9.3 Application of Event Processing to Astronomy 9.3.1 Esper EPL 9.4 Conclusion Acknowledgment References Part iii Knowledge 10 Time Series 10.1 Introduction 10.2 Basics of Time Series 10.3 Early Agnostic Time-Domain Studies 10.4 Longer Time Series With Uniform Passbands 10.5 Features 10.5.1 Dimensionality Reduction 10.6 Period Finding 10.7 Early Characterization/Classification 10.8 Classification Using CNNs 10.9 RNNs, LSTMs, etc. 10.10 Availability of Libraries 10.11 Real Time Aspects 10.12 Topics not Adequately Covered Abbreviations Acknowledgments References 11 Advanced Time Series Analysis of Generally Irregularly Spaced Signals: Beyond the Oversimplified Methods 11.1 Introduction 11.2 Statistical Properties of the Functions of (Correlated) Parameters of the LS Fits 11.2.1 Least-Squares Method: Test Functions 11.2.2 Linear Least Squares 11.2.3 Influence of Deviations of Coefficients 11.2.4 Linear Approximation 11.2.5 Linearization 11.2.6 Statistical Properties of Functions of Coefficients 11.2.7 Accuracy of the Derivative and Moments of Crossings 11.3 Statistically Optimal Number of Parameters 11.3.1 "Esthetic" (User-Defined) 11.3.2 Analysis of Variance (ANOVA) 11.3.3 "Best Accuracy" and Related Estimates 11.4 Nonlinear LS Method and Differential Corrections 11.5 Nonunique Minimum of the Test Function 11.5.1 Bootstrap Method 11.5.2 Determination of Times of Minima/Maxima (ToM) 11.6 Periodogram Analysis: Parametric Versus Nonparametric Methods 11.6.1 From Time to Phase 11.6.2 "Parametric" ("Point-Curve") Methods 11.6.3 "Nonparametric" ("Point-Point") Methods 11.7 What Is the "Orthodox" Fourier Transform for Discrete Data? 11.7.1 LS-Based DFT 11.8 Periodogram Analysis of Signals With Aperiodic or Periodic Trends: When Detrending and Prewhitening Lead to Generally Wrong Results 11.9 Analysis of Multiperiodic, Multiharmonic, and Multishift Signals 11.10 Running Approximations 11.10.1 General Expressions 11.10.2 Running Approximations and Scalegram Analysis for Irregularly Spaced Data 11.10.3 Running Sines 11.10.4 Wavelet Analysis 11.11 Moments of Characteristic Points (O-C Analysis) 11.11.1 Period Determination 11.11.2 Period Changes 11.12 Autocorrelation and Cross-Correlation Analysis 11.12.1 Continuous and Discrete Regular Signals 11.12.2 Bias of ACF due to Trend 11.12.3 Irregularly Spaced Signals 11.13 Principal Component Analysis and Related Methods 11.13.1 Principal Component Analysis: Multichannel Signals 11.13.2 Case of Noisy Channels of Simultaneous Signals 11.13.3 Singular Spectrum Analysis (SSA) 11.13.4 Effective Amplitudes of Low, Fast, and Noise Variability 11.14 Conclusions Acknowledgments References 12 Learning in Big Data: Introduction to Machine Learning 12.1 Brief History of Machine Learning 12.1.1 Introduction 12.1.2 The Modern History of Artificial Intelligence and ML 12.1.3 What Is Learning? 12.1.4 Why Use Machine Learning Instead of Traditional Statistics? 12.2 Types of Learning 12.2.1 Supervised Learning 12.2.2 Unsupervised Learning 12.2.3 Semisupervised Learning 12.2.4 Reinforcement Learning 12.2.5 Active Learning 12.3 Machine Learning Algorithms 12.3.1 Naive Bayes Classifier 12.3.2 k-Nearest Neighbors 12.3.3 Support Vector Machine 12.3.4 Random Forest 12.3.5 Artificial Neural Network 12.3.6 Multilayer Perceptron 12.3.7 Dimensionality Reduction 12.4 Machine Learning in Astronomy and Geosciences 12.4.1 Case Studies in Astronomy 12.4.1.1 Object Classification 12.4.1.1.1 Star Galaxy Classification 12.4.1.1.2 Galaxy Morphology 12.4.1.2 Photometric Redshift 12.4.1.3 Data Mining Software and Tools 12.4.2 Case Studies in Geoscience 12.4.3 Simple Case Study in Geology: Supervised Classification of Lithology 12.4.4 Common Properties 12.5 Scalable Machine Learning Algorithms 12.5.1 What Is a Scalable Machine Learning Algorithm? 12.5.2 Scalable Clustering 12.5.2.1 Hierarchical Methods 12.5.2.2 Density-Based Methods 12.5.2.3 Grid-Based Methods 12.5.3 Scalable Prediction: Classification and Regression 12.5.4 Scalable Pattern Mining 12.6 Scalable ML Frameworks 12.6.1 Apache Spark 12.6.1.1 Components of Apache Spark 12.6.2 Flink ML 12.7 Inference and Learning in Astronomy and Geosciences 12.8 Summary References 13 Deep Learning - an Opportunity and a Challenge for Geo- and Astrophysics 13.1 Introduction 13.2 The Difference Between Shallow Learning and Deep Learning 13.3 Why Is Deep Learning a Good Fit for the Data Science Problems in Astro- and Geophysics 13.4 Deep Learning Models 13.4.1 Convolutional Neural Networks 13.4.2 Recurrent Neural Networks 13.4.3 Generative Models 13.4.3.1 Variational Autoencoders 13.4.3.2 Generative Adversarial Networks References 14 Astro- and Geoinformatics - Visually Guided Classification of Time Series Data 14.1 Introduction 14.2 The MESSENGER Data 14.3 System Architecture 14.3.1 Scalability 14.3.2 Indexing Time Series With Apache Lucene 14.3.3 Related Pattern Search in Signal Data 14.4 Visual Interface 14.4.1 Large-Scale Signal Visualization 14.4.2 Finding Related Signal Patterns 14.4.3 Signal Annotation 14.5 Time Series Preprocessing 14.5.1 Normalization of Time Series 14.5.2 Stationarity of Time Series 14.5.3 Trends in Time Series 14.5.4 Periodicity and Seasonality in Time Series 14.6 Time Series Representation 14.6.1 PAA 14.6.2 SAX 14.6.3 Piecewise Linear Representation 14.6.4 Windowed Approach to Time Series 14.7 Time Series Similarity 14.8 Pattern Mining in Time Series 14.8.1 Outlier Detection in Time Series 14.8.2 Frequent Patterns 14.8.3 Surprising Patterns 14.9 Time Series Modeling and Classification 14.9.1 Time Series Forecasting 14.9.2 Classification and Clustering of Unsegmented Time Series 14.9.3 Classification on Segmented Time Series 14.10 Conclusions References 15 When Evolutionary Computing Meets Astro- and Geoinformatics 15.1 Introduction 15.2 The Optimization Problem 15.2.1 Standard Formulation 15.2.2 Types of Optimization Problems 15.2.2.1 The Number of Decision Makers 15.2.2.2 The Type of the Decision Variables 15.2.2.3 The Number of Constraints 15.2.2.4 The Number of Objective Functions 15.2.2.5 The Linearity 15.2.2.6 The Uncertainty Tied to the Optimization Model 15.2.3 The Multiobjective Optimization Problem 15.3 Evolutionary Computation 15.3.1 Basic Structure of an Evolutionary Algorithm 15.3.2 Evolution Operators 15.3.2.1 Selection 15.3.2.2 Cross-Over 15.3.2.3 Mutation 15.4 Evolutionary Computing Metaheuristics 15.4.1 Genetic Algorithms 15.4.2 Evolutionary Strategy 15.4.3 Evolutionary Programming 15.4.4 Genetic Programming 15.4.5 Other Evolutionary Algorithms and Bio-Inspired Approaches 15.4.5.1 Differential Evolution 15.4.5.2 Coevolutionary Algorithms 15.4.5.3 Swarm Intelligence 15.4.5.4 Artificial Immune Systems 15.5 Parallel Evolutionary Computing Metaheuristics for Big Data 15.6 Practical Applications of Evolutionary Computing Metaheuristics in the Context of Astro- and Geoinformatics 15.7 Discussion and Conclusions Acknowledgment References Part iv Wisdom 16 Multiwavelength Extragalactic Surveys: Examples of Data Mining 16.1 Introduction 16.2 The Automated Morphological Classification for the SDSS Galaxies 16.3 Zone of Avoidance of the Milky Way 16.4 Flux Variability of the Blazar 3C 454.3 References 17 Applications of Big Data in Astronomy and Geosciences: Algorithms for Photographic Images Processing and Error Elimination 17.1 Flatbed Scanners as Digitizers for Astronomic Photographic Material 17.2 Algorithm of Correction for Scanner Errors 17.3 Big Photographic Data and Their Errors Acknowledgments References 18 Big Astronomical Datasets and Discovery of New Celestial Bodies in the Solar System in Automated Mode by the CoLiTec Software 18.1 Introduction 18.2 Big Astronomical Data Processing 18.3 Summary References 19 Big Data for the Magnetic Field Variations in Solar-Terrestrial Physics and Their Wavelet Analysis 19.1 Introduction to Big Magnetic Data in Solar-Terrestrial Physics 19.2 Mechanism of Generating Strong Geomagnetic Storms (Long-Period Geomagnetic Field Variations) 19.2.1 The Big Picture of Solar-Terrestrial Physics - Quiet and Disturbed Geomagnetic Phenomena 19.2.2 Geomagnetic Storms 19.2.3 Ground Geomagnetic Field, and Geomagnetic Activity Index During a Storm 19.2.3.1 The Dst Index During the 2003 Storm 19.2.4 Ionospheric Parameters From Ionospheric Sounding Stations 19.2.4.1 Data About the Parameters of the Ionospheric Plasma 19.2.5 Emergence of Higher-Frequency Modes in the Ionospheric Parameters and in the IMF Which Are Related to the Ground Geomagnetic Field Variations 19.2.6 The Strong Geomagnetic Storms in 2003 and 2017 to Be Analyzed 19.2.6.1 The Storm in 2003 19.2.6.2 The Storm on 7 and 8 September 2017 19.2.7 Acquired Data for Short-Period Variations of the Geomagnetic Field, the Ionospheric Parameters, and the IMF 19.2.8 Data About the Strongly Disturbed Geomagnetic Field in October and November 2003 and September 2017 19.2.8.1 The H Component of the Geomagnetic Data From the Panagyurishte (PAG) Observatory 19.2.8.2 The DS Index From the Surlary (SUA) Geomagnetic Data 19.3 Experiments With Wavelet Analysis and Conclusions 19.3.1 References on Applications of Wavelet Analysis to Geomagnetism 19.3.2 Experiments With Data on a Quiet Day, 28 July 2018 19.3.2.1 Visualization of the Wavelet Analysis 19.3.2.2 Experiments With Balchik Geomagnetic Data, 28 July 2018, 1 Second Data 19.3.2.3 Experiment With SUA Geomagnetic Data on 28 July 2018 19.3.3 Experiments With Data for the Geomagnetic Storm on 7 and 8 September 2017 19.3.3.1 The Dst for the Period 7-10 September 2017 19.3.3.2 Experiments With Geomagnetic Data From PAG, 7-10 September 2017, 1 min Data 19.3.3.3 Experiments With Ionospheric Data From Athens, 7-10 September 2017, 5 min Data 19.3.3.4 Experiments With IMF Data From ACE Satellite, 7-10 September 2017, 4 min Data 19.3.4 Experiments With Data for the 2003 Strong Geomagnetic Storm 19.3.4.1 Experiments With Geomagnetic Data From SUA, on 28 and 29 October 2003 19.3.4.2 Experiments With Spline Smoothing of Dst 19.3.4.3 Experiments With IMF Data, on 28 and 29 October 2003, 4 min Data 19.4 Conclusions Acknowledgments 19.A Wavelet Analysis and Its Applications to Geomagnetic Data 19.A.1 Technical Stuff 19.A.2 CWT of Some Simple Functions References 20 International Database of Neutron Monitor Measurements: Development and Applications 20.1 Introduction 20.2 The Neutron Monitor Database (NMDB) 20.2.1 The Need for NMDB 20.2.2 The NMDB Database 20.2.3 Data Contribution and Dissemination 20.3 Applications 20.3.1 Ground Level Enhancements (GLEs) - Detection and Characterization 20.3.2 Evaluation of the Radiation Effects on Electronics and Health 20.3.3 Space Weather Nowcast and Forecast 20.4 Summary and Outlook Acknowledgments References 21 Monitoring the Earth Ionosphere by Listening to GPS Satellites 21.1 Introduction 21.2 The Determination and Procedure Transformation of the Ionosphere Parameters With GNSS Observations 21.3 Recovery of the Spatial State of the Ionosphere 21.3.1 Restrictions and Assumptions for Use of the GNSS Measurements to Restore the Ionization Field 21.3.2 Description of the Method for Determining Ionization Using STEC 21.3.3 Results of the Experimental Restoration of the Changes in the Atmosphere Ionization 21.3.4 Algorithm of the Ionization Field Change Restoration Using the Approximation of the Change in Time of the Coefficients of the Polynomial From Numerous Arguments 21.4 Conclusion References 22 Exploitation of Big Real-Time GNSS Databases for Weather Prediction 22.1 Introduction 22.2 Influence of Neutral Atmosphere on Results of Range Finding Observations of Artificial Satellites 22.3 Taking Atmospheric Delay Into Account Using Modern Satellite Technology for Coordinate Support in Real-Time 22.4 Use of Modern Satellite Technology in Meteorology 22.5 Conclusions References 23 Application of Databases Collected in Ionospheric Observations by VLF/LF Radio Signals 23.1 Introduction 23.2 Experimental Setup and Observations 23.2.1 Global Experimental Setups 23.2.2 Example of VLF/LF Receiver and Collected Data 23.3 Application of Databases in Detections of Astrophysical and Geophysical Events 23.3.1 Sources of the Low Ionospheric Perturbations 23.3.2 Detections of the Low Ionospheric Perturbations 23.3.2.1 Time-Domain Analyses 23.3.2.2 Frequency-Domain Analyses 23.4 Application of Databases in Modeling Low Ionospheric Plasma Parameters 23.4.1 Modeling of Low Ionospheric Plasma Parameters 23.4.2 Example of VLF/LF Database Application in Modeling 23.4.2.1 Numerical Determination of Wait's Parameters 23.4.2.2 Analytical Calculation of Electron Density 23.5 Practical Applications 23.5.1 Natural Disasters 23.5.1.1 Earthquakes 23.5.1.2 Cyclones 23.5.2 Telecommunication 23.6 Summary Acknowledgment References 24 Influence on Life Applications of a Federated Astro-Geo Database 24.1 Introduction 24.1.1 History of the Influence of Geophysical Parameters on Health 24.2 Meteorology and Climate (Temperature, Humidity, etc.) and Application to Disease Propagation 24.3 Influence of Extraterrestrial Sources: Solar Activity, Galactic Cosmic Rays, and Geomagnetism 24.4 Solar UV and Life 24.5 Applications to Agriculture 24.6 Conclusions: Future of Space Observations, Biodiversity, and Astrobiology References Index