دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Wael Yafooz, Hussain Al-Aqrabi, Arafat Al-Dhaqm, Abdelhamid Emara سری: Studies in Computational Intelligence, 1080 ISBN (شابک) : 3031211987, 9783031211980 ناشر: Springer سال نشر: 2023 تعداد صفحات: 278 [279] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Kids Cybersecurity Using Computational Intelligence Techniques به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب امنیت سایبری کودکان با استفاده از تکنیکهای هوش محاسباتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب جدیدترین روشها، رویکردها و فنآوریهای بهروز را در مورد نحوه تشخیص آزار اینترنتی کودکان در رسانههای اجتماعی و همچنین نظارت بر آموزش الکترونیکی کودکان، نظارت بر بازیهای طراحیشده و فعالیتهای رسانههای اجتماعی برای کودکان معرفی و ارائه میکند. کودکان به صورت روزانه در معرض محتوای مضر آنلاین قرار می گیرند. تلاشهای زیادی برای حل این مشکل با انجام روشهایی بر اساس رتبهبندی و رتبهبندی و همچنین بررسی نظرات برای نشان دادن ارتباط این ویدیوها به کودکان صورت گرفته است. متأسفانه، همچنان عدم نظارت بر ویدیوهای اختصاص داده شده به کودکان وجود دارد. این کتاب همچنین الگوریتم جدیدی را برای تجزیه و تحلیل محتوا در برابر اطلاعات مضر برای کودکان معرفی می کند. علاوه بر این، هدف ردیابی اطلاعات مفید کودکان و موسسات تشخیص پرخاشگری متنی کودک از طریق روشهای یادگیری ماشینی و عمیق و پردازش زبان طبیعی برای فضای امنتر برای کودکان در رسانههای اجتماعی و آنلاین و مبارزه با مشکلاتی مانند کمبود نظارت، زورگویی سایبری، قرار گرفتن کودک در معرض محتوای مضر. این کتاب برای نگرانی های دانشجویان کارشناسی ارشد و محققان در مورد روش ها و رویکردهای اخیر امنیت سایبری کودکان مفید است.
This book introduces and presents the newest up-to-date methods, approaches and technologies on how to detect child cyberbullying on social media as well as monitor kids E-learning, monitor games designed and social media activities for kids. On a daily basis, children are exposed to harmful content online. There have been many attempts to resolve this issue by conducting methods based on rating and ranking as well as reviewing comments to show the relevancy of these videos to children; unfortunately, there still remains a lack of supervision on videos dedicated to kids. This book also introduces a new algorithm for content analysis against harmful information for kids. Furthermore, it establishes the goal to track useful information of kids and institutes detection of kid’s textual aggression through methods of machine and deep learning and natural language processing for a safer space for children on social media and online and to combat problems, such as lack of supervision, cyberbullying, kid’s exposure to harmful content. This book is beneficial to postgraduate students and researchers\' concerns on recent methods and approaches to kids\' cybersecurity.
Contents State-of-the-Art Everyday Cyber Safety for Students 1 Introduction 2 Cyber Security Terms that Everyone Who Uses a Computer Should Know 3 Identifying Home Threats 4 Accounts, Data, and Devices 5 Getting Rid of Zombie Applications and Files 6 Hijacked Apps 7 Exorcise Zombie Programs and Apps! 8 Gaming Can Make You a Target 9 A Place for Files and All Files in Their Place 10 Work Locally 11 Use Proper File-Naming Conventions 12 Save Often 13 Create Versions 14 Backup Your Work 15 Identifying Data Stored About Your 16 Email Communications 17 Web Measurement Tools and Web Surveys 18 Cookies 19 Figuring Out Fake Versus Half-Baked News 20 Protect and Detect 20.1 Two Factor and Multifactor Authentication (MFA) 20.2 If You Don't Know Your Router's Userid and Password, Then I Do! 21 Tips, Tricks, and Techniques to Protect Devices 21.1 Keep Your Firewall Turned On 21.2 Install or Update Your Antivirus Software 21.3 Install or Update Your Antispyware Technology 21.4 Keep Your Operating System up to Date 21.5 Be Careful About What You Download 21.6 Turn Off Your Computer 22 Respond and Recover 23 Conclusion References Machine Learning Approaches for Kids’ E-learning Monitoring 1 Introduction 2 Related Works 3 Methodology 3.1 The Aim of Machine Learning Approaches in Exam Management System 3.2 The Advantages of Using ML Methods in Identifying Children with Low Performance 3.3 Issues and Challenges Related to Using ML in Examination 3.4 Threats Issues Related to Using ML in the Examination 4 Results and Discussion 5 Conclusion References Factors Influencing on Online Education Outcomes–An Empirical Study Based on Kids’ Parents 1 Introduction 2 Literature Review 3 Data and Methodology 3.1 Data 3.2 Methodology 4 Research Results 4.1 Scale Analysis 4.2 Explotory Factor Analysis 4.3 Correlation Matrix 4.4 Estimation Results 5 Conclusions References Review on the Social Media Management Techniques Against Kids Harmful Information 1 Introduction 2 Concept of Harmful Information 3 Machine Learning 3.1 Supervised Machine Learning Algorithms 3.2 Unsupervised Machine Learning 3.3 Semi-supervised Machine Learning 3.4 Reinforcement Machine Learning 4 Deep Learning 4.1 Long-Short Term Memory (LSTM) 4.2 Feedforward Neural Network (FNN) 4.3 Convolutional Neural Network (CNN) 4.4 Recurrent Neural Network (RNN) 5 Content Analysis Using Machine Learning 6 Content Analysis Using Deep Learning 7 Summary of Revised Papers 7.1 Content Analysis via Machine Learning 7.2 Content Analysis via Deep Learning 8 Challenges in Detecting Harmful Information 9 Conclusion and Future Work References Review of Information Security Management Frameworks 1 Introduction 1.1 Risk Review 1.2 Risk Management 1.3 Key Roles of Risk Management 1.4 Characteristics of Information Security 1.5 Information Security Frameworks (ISO 27000 Series) 2 Methodology 3 Discussion 4 Conclusion References Database Forensics Field and Children Crimes 1 Introduction 2 Methodology 3 Results and Discussion 4 Conclusion References From Exhibitionism to Addiction, or Cyber Threats Among Children and Adolescents 1 Introduction 2 Cyber Threats 3 Cyber Security as a Challenge 4 Internet Addiction 5 Digital Exhibitionism 6 Survey Results 7 Summary References Cyberbullying and Kids Cyber Security Protection of Users Kids on Twitter Platform Using Naïve Bayes 1 Introduction 2 Literature Review 3 Methodology 3.1 URL Based and Content Based Spam Detection 3.2 Preprocessing Technique 3.3 Feature Extraction 3.4 Naive Bayes 4 Experimental Results 5 Discussion 5.1 Confusion Matrix Naïve Bayes Model 6 Conclusion 7 Future Work References The Impact of Fake News Spread on Social Media on the Children in Indonesia During Covid-19 1 Introduction 2 Research Methods 3 Results and Discussion 3.1 Evidence from the Spread of Fake News (Hoax and Disinformation) Cases in Indonesia 3.2 Media Literacy as an Effort to Mitigate Infomedicine Against Fake News in Indonesia 3.3 Policies/Regulations for Countering Fake News (Fake News) Based on Indonesia’s Law 4 Conclusion References A Preventive Approach to Weapons Detection for Children Using Quantum Deep Learning 1 Introduction 2 Literature Review 3 Dataset 4 Methodology 4.1 Artificial Intelligence 4.2 Quantum Artificial Intelligence 4.3 Weapon Detector Using DL and QDL 5 Results 5.1 Accuracy 5.2 Confusion Matrix 5.3 ROC Curve 5.4 Precision, Recall, and F1-Score 6 Conclusion and Future Work References Learning Arabic for Kids Online Using Google Classroom 1 Introduction 2 Research Method 3 Results and Discussion 4 Conclusions References Child Emotion Recognition via Custom Lightweight CNN Architecture 1 Introduction 2 Literature 2.1 Available Datasets 3 Proposed Framework 3.1 Data Scaling and CNN Training 3.2 Deployment Infrastructure 3.3 Addressing Security 4 Conclusion References Cybercrime Sentimental Analysis for Child Youtube Video Dataset Using Hybrid Support Vector Machine with Ant Colony Optimization Algorithm 1 Introduction 1.1 Cyber Crime 2 Literature Review 3 System Design 3.1 Sentiment Classification Techniques 3.2 Machine Learning Approach 3.3 Maximum Entropy 3.4 Architecture for Ensemble Approach 3.5 Adaboosting with SVM Method 3.6 Majority Voting 3.7 Proposed Hybrid Support Vector Machine with Ant Colony Optimization 4 Results and Discussion 5 Conclusion References Cyberbullying Awareness Through Sentiment Analysis Based on Twitter 1 Introduction 2 Problem Statement 3 Literature Review 4 Sentiment Analysis 4.1 Specific Description on Sentiment Analysis 5 Technique Descriptions on Sentiment Analysis 5.1 Naïve Bayes Classifier 5.2 Naïve Bayes Classifier, Support Vector Machines and Convolutional Neural Network 5.3 Lexicon Based Approaches, Fuzzy Systems, Supervised Learning, and Statistical Approaches 5.4 Support Vector Machine 6 Common Features Related to Twitter 7 Conclusion References The Impact of Fake News on Kid’s Life from the Holy Al-Qur’an Perspective 1 Introduction 2 Research Method 3 Results and Discussion 3.1 The Impact of Spreading Fake News 3.2 Efforts to Prevent the Spread of Fake News 4 Conclusions References Early Prediction of Dyslexia Risk Factors in Kids Through Machine Learning Techniques 1 Introduction 2 Related Works 3 Proposed Methodology for Dyslexia Detection Using Machine Learning Techniques 3.1 Dataset 3.2 Data Preprocessing 3.3 Feature Selection 3.4 Building and Training Machine Learning Models 3.5 Experiments 3.6 Evaluation Metrics 4 Results and Discussion 5 Conclusion References Development of Metamodel for Information Security Risk Management 1 Introduction 2 Related Works 3 Methodology and Development Process 4 Results and Discussion 5 Conclusion References Detecting Kids Cyberbullying Using Transfer Learning Approach: Transformer Fine-Tuning Models 1 Introduction 2 Related Studies 3 Materials and Methods 3.1 Dataset Preparation Phase 3.2 Data-Pre-processing Phase 3.3 Pertained Models 3.4 Evaluation Phase 4 Experiments and Results Discussion 5 Conclusion References YouTube Sentiment Analysis: Performance Model Evaluation 1 Introduction 2 Related Works 3 Overview of the Proposed Model 3.1 Dataset Description 3.2 Data Pre-processing 3.3 Annotations 3.4 Feature Extraction 3.5 Machine Learning Classifiers 3.6 Model Evaluation 4 Results and Discussion 5 Conclusion References