دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Richard J. Roiger
سری:
ISBN (شابک) : 036743914X, 9780367439149
ناشر: Chapman and Hall/CRC
سال نشر: 2020
تعداد صفحات: 365
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Just Enough R!: An Interactive Approach to Machine Learning and Analytics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب Just Enough R!: یک رویکرد تعاملی برای یادگیری ماشین و تجزیه و تحلیل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فقط کافی است! یک رویکرد تعاملی برای یادگیری ماشین و تجزیه و تحلیلبه اندازه کافی از زبان R، الگوریتمهای یادگیری ماشین، روششناسی آماری، و تجزیه و تحلیل برای خواننده ارائه میکند تا نحوه یافتن ساختار جالب در دادهها را بیاموزد. این رویکرد را میتوان «دیدن و سپس انجام دادن» نامید زیرا ابتدا با استفاده از مثالهای ساده و قابل فهم نحوه عملکرد الگوریتمهای مختلف یادگیری ماشین مستقل از هر زبان برنامهنویسی، توضیحات گام به گام ارائه میدهد. به دنبال آن اسکریپت های دقیق نوشته شده در R که الگوریتم ها را برای حل مسائل غیر ضروری با داده های واقعی اعمال می کند، دنبال می شود. کد اسکریپت ارائه شده است و به خواننده این امکان را می دهد که اسکریپت ها را هنگام مطالعه توضیحات ارائه شده در متن اجرا کند.
ویژگی ها
p>
< /p>
درباره نویسنده
ریچارد جی. رویگر استاد بازنشسته در دانشگاه ایالتی مینه سوتا، مانکاتو، جایی که او بیش از 30 سال در بخش کامپیوتر و علوم اطلاعات به تدریس و تحقیق پرداخت.
Just Enough R! An Interactive Approach to Machine Learning and Analytics presents just enough of the R language, machine learning algorithms, statistical methodology, and analytics for the reader to learn how to find interesting structure in data. The approach might be called "seeing then doing" as it first gives step-by-step explanations using simple, understandable examples of how the various machine learning algorithms work independent of any programming language. This is followed by detailed scripts written in R that apply the algorithms to solve nontrivial problems with real data. The script code is provided, allowing the reader to execute the scripts as they study the explanations given in the text.
Features
About the Author
Richard J. Roiger is a professor emeritus at Minnesota State University, Mankato, where he taught and performed research in the Computer and Information Science Department for over 30 years.
Cover Half Title Title Page Copyright Page Table of Contents Preface Acknowledgment Author Chapter 1 Introduction to Machine Learning 1.1 Machine Learning, Statistical Analysis, and Data Science 1.2 Machine Learning: A First Example 1.2.1 Attribute-Value format 1.2.2 A Decision Tree for Diagnosing Illness 1.3 Machine Learning Strategies 1.3.1 Classicisation 1.3.2 Estimation 1.3.3 Prediction 1.3.4 Unsupervised Clustering 1.3.5 Market Basket Analysis 1.4 Evaluating Performance 1.4.1 Evaluating Supervised Models 1.4.2 Two-Class Error Analysis 1.4.3 Evaluating Numeric Output 1.4.4 Comparing Models by Measuring Lift 1.4.5 Unsupervised Model Evaluation 1.5 Ethical Issues 1.6 Chapter Summary 1.7 Key Terms Exercises Chapter 2 Introduction to R 2.1 Introducing R And RStudio 2.1.1 Features of R 2.1.2 Installing R 2.1.3 Installing RStudio 2.2 Navigating RStudio 2.2.1 The Console 2.2.2 The Source Panel 2.2.3 The Global Environment 2.2.4 Packages 2.3 Where’s The Data? 2.4 Obtaining Help and Additional Information 2.5 Summary Exercises Chapter 3 Data Structures and Manipulation 3.1 Data Type 3.1.1 Character Data and Factors 3.2 Single-Mode Data Structures 3.2.1 Vectors 3.2.2 Matrices and Arrays 3.3 Multimode Data Structures 3.3.1 Lists 3.3.2 Data Frames 3.4 Writing Your Own Functions 3.4.1 Writing a Simple Function 3.4.2 Conditional Statements 3.4.3 Iteration 3.4.4 Recursive Programming 3.5 Summary 3.6 Key Terms Exercises Chapter 4 Preparing the Data 4.1 A Process Model for Knowledge Discovery 4.2 Creating A Target Dataset 4.2.1 Interfacing R with the Relational Model 4.2.2 Additional Sources for Target Data 4.3 Data Preprocessing 4.3.1 Noisy Data 4.3.2 Preprocessing With R 4.3.3 Detecting Outliers 4.3.4 Missing Data 4.4 Data Transformation 4.4.1 Data Normalization 4.4.2 Data Type Conversion 4.4.3 Attribute and Instance Selection 4.4.4 Creating Training and Test Set Data 4.4.5 Cross Validation and Bootstrapping 4.4.6 Large-Sized Data 4.5 Chapter Summary 4.6 Key Terms Exercises Chapter 5 Supervised Statistical Techniques 5.1 Simple Linear Regression 5.2 Multiple Linear Regression 5.2.1 Multiple Linear Regression: An Example 5.2.2 Evaluating Numeric Output 5.2.3 Training/Test Set Evaluation 5.2.4 Using Cross Validation 5.2.5 Linear Regression with Categorical Data 5.3 Logistic Regression 5.3.1 Transforming the Linear Regression Model 5.3.2 The Logistic Regression Model 5.3.3 Logistic Regression with R 5.3.4 Creating a Confusion Matrix 5.3.5 Receiver Operating Characteristics (ROC) Curves 5.3.6 The Area under an ROC Curve 5.4 Naïve Bayes Classifier 5.4.1 Bayes Classifier: An Example 5.4.2 Zero-Valued Attribute Counts 5.4.3 Missing Data 5.4.4 Numeric Data 5.4.5 Experimenting With Naïve Bayes 5.5 Chapter Summary 5.6 Key Terms Exercises Chapter 6 Tree-Based Methods 6.1 A Decision Tree Algorithm 6.1.1 An Algorithm for Building Decision Trees 6.1.2 C4.5 Attribute Selection 6.1.3 Other Methods for Building Decision Trees 6.2 Building Decision Trees: C5.0 6.2.1 A Decision Tree for Credit Card Promotions 6.2.2 Data for Simulating Customer Churn 6.2.3 Predicting Customer Churn with C5.0 6.3 Building Decision Trees: Rpart 6.3.1 An Rpart Decision Tree for Credit Card Promotions 6.3.2 Train and Test Rpart: Churn Data 6.3.3 Cross Validation Rpart: Churn Data 6.4 Building Decision Trees: J48 6.5 Ensemble Techniques for Improving Performance 6.5.1 Bagging 6.5.2 Boosting 6.5.3 Boosting: An Example with C5.0 6.5.4 Random Forests 6.6 Regression Trees 6.7 Chapter Summary 6.8 Key Terms Exercises Chapter 7 Rule-Based Techniques 7.1 From Trees to Rules 7.1.1 The Spam Email Dataset 7.1.2 Spam Email Classification: C5.0 7.2 A Basic Covering Rule Algorithm 7.2.1 Generating Covering Rules With JRip 7.3 Generating Association Rules 7.3.1 Confidence and Support 7.3.2 Mining Association Rules: An Example 7.3.3 General Considerations 7.3.4 Rweka’s Apriori Function 7.4 Shake, Rattle, and Roll 7.5 Chapter Summary 7.6 Key Terms Exercises Chapter 8 Neural Networks 8.1 Feed-Forward Neural Networks 8.1.1 Neural Network Input Format 8.1.2 Neural Network Output Format 8.1.3 The Sigmoid Evaluation Function 8.2 Neural Network Training: A Conceptual View 8.2.1 Supervised Learning with Feed-Forward Networks 8.2.2 Unsupervised Clustering With Self-Organizing Maps 8.3 Neural Network Explanation 8.4 General Considerations 8.4.1 Strengths 8.4.2 Weaknesses 8.5 Neural Network Training: A Detailed View 8.5.1 The Backpropagation Algorithm: An Example 8.5.2 Kohonen Self-Organizing Maps: An Example 8.6 Building Neural Networks with R 8.6.1 The Exclusive-OR Function 8.6.2 Modeling Exclusive-OR With MLP: Numeric Output 8.6.3 Modeling Exclusive-OR With MLP: Categorical Output 8.6.4 Modeling Exclusive-OR With Neuralnet: Numeric Output 8.6.5 Modeling Exclusive-OR With Neuralnet: Categorical Output 8.6.6 Classifying Satellite Image Data 8.6.7 Testing For Diabetes 8.7 Neural Net Clustering For Attribute Evaluation 8.8 Times Series Analysis 8.8.1 Stock Market Analytics 8.8.2 Time Series Analysis: An Example 8.8.3 The Target Data 8.8.4 Modeling the Time Series 8.8.5 General Considerations 8.9 Chapter Summary 8.10 Key Terms Exercises Chapter 9 Formal Evaluation Techniques 9.1 What Should Be Evaluated? 9.2 Tools for Evaluation 9.2.1 Single-Valued Summary Statistics 9.2.2 The Normal Distribution 9.2.3 Normal Distributions and Sample Means 9.2.4 A Classical Model for Hypothesis Testing 9.3 Computing Test Set Confidence Intervals 9.4 Comparing Supervised Models 9.4.1 Comparing the Performance of Two Models 9.4.2 Comparing the Performance of Two or More Models 9.5 Confidence Intervals for Numeric Output 9.6 Chapter Summary 9.7 Key Terms Exercises Chapter 10 Support Vector Machines 10.1 Linearly Separable Classes 10.2 The Nonlinear Case 10.3 Experimenting With Linearly Separable Data 10.4 Microarray Data Mining 10.4.1 DNA and Gene Expression 10.4.2 Preprocessing Microarray Data: Attribute Selection 10.4.3 Microarray Data Mining: Issues 10.5 A Microarray Application 10.5.1 Establishing a Benchmark 10.5.2 Attribute Elimination 10.6 Chapter Summary 10.7 Key Terms Exercises Chapter 11 Unsupervised Clustering Techniques 11.1 The K-Means Algorithm 11.1.1 An Example Using K-Means 11.1.2 General Considerations 11.2 Agglomerative Clustering 11.2.1 Agglomerative Clustering: An Example 11.2.2 General Considerations 11.3 Conceptual Clustering 11.3.1 Measuring Category Utility 11.3.2 Conceptual Clustering: An Example 11.3.3 General Considerations 11.4 Expectation Maximization 11.5 Unsupervised Clustering With R 11.5.1 Supervised Learning for Cluster Evaluation 11.5.2 Unsupervised Clustering For Attribute Evaluation 11.5.3 Agglomerative Cluster: A Simple Example 11.5.4 Agglomerative Clustering of Gamma-Ray Burst data 11.5.5 Agglomerative Clustering Of Cardiology Patient Data 11.5.6 Agglomerative Clustering Of Credit Screening Data 11.6 Chapter Summary 11.7 Key Terms Exercises Chapter 12 A Case Study in Predicting Treatment Outcome 12.1 Goal Identification 12.2 A Measure of Treatment Success 12.3 Target Data Creation 12.4 Data Preprocessing 12.5 Data Transformation 12.6 Data Mining 12.6.1 Two-Class Experiments 12.7 Interpretation and Evaluation 12.7.1 Should Patients Torso Rotate? 12.8 Taking Action 12.9 Chapter Summary Bibliography Appendix A: Supplementary Materials and More Datasets Appendix B: Statistics for Performance Evaluation Subject Index Index of R Functions Script Index