ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Judgment in Predictive Analytics

دانلود کتاب قضاوت در تحلیل پیشگو

Judgment in Predictive Analytics

مشخصات کتاب

Judgment in Predictive Analytics

ویرایش:  
نویسندگان:   
سری: International Series in Operations Research & Management Science, 343 
ISBN (شابک) : 303130084X, 9783031300844 
ناشر: Springer 
سال نشر: 2023 
تعداد صفحات: 319
[320] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 7 Mb 

قیمت کتاب (تومان) : 33,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Judgment in Predictive Analytics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب قضاوت در تحلیل پیشگو نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب قضاوت در تحلیل پیشگو




توضیحاتی درمورد کتاب به خارجی

This book highlights research on the behavioral biases affecting judgmental accuracy in judgmental forecasting and showcases the state-of-the-art in judgment-based predictive analytics. In recent years, technological advancements have made it possible to use predictive analytics to exploit highly complex (big) data resources. Consequently, modern forecasting methodologies are based on sophisticated algorithms from the domain of machine learning and deep learning. However, research shows that in the majority of industry contexts, human judgment remains an indispensable component of the managerial forecasting process. This book discusses ways in which decision-makers can address human behavioral issues in judgmental forecasting. The book begins by introducing readers to the notion of human-machine interactions. This includes a look at the necessity of managerial judgment in situations where organizations commonly have algorithmic decision support models at their disposal. The remainder of the book is divided into three parts, with Part I focusing on the role of individual-level judgment in the design and utilization of algorithmic models. The respective chapters cover individual-level biases such as algorithm aversion, model selection criteria, model-judgment aggregation issues and implications for behavioral change. In turn, Part II addresses the role of collective judgments in predictive analytics. The chapters focus on issues related to talent spotting, performance-weighted aggregation, and the wisdom of timely crowds. Part III concludes the book by shedding light on the importance of contextual factors as critical determinants of forecasting performance. Its chapters discuss the usefulness of scenario analysis, the role of external factors in time series forecasting and introduce the idea of mindful organizing as an approach to creating more sustainable forecasting practices in organizations.



فهرست مطالب

Preface
	Reference
Acknowledgments
Contents
Part I: Judgment in Human-Machine Interactions
	Chapter 1: Beyond Algorithm Aversion in Human-Machine Decision-Making
		1 Introduction
		2 The Human vs. Machine Debate in Judgment and Decision-Making
		3 Human-Machine Decision-Making
		4 Beyond Algorithm Aversion: What Is Algorithm Misuse?
		5 Causes of Algorithm Aversion and Algorithm Misuse
			5.1 Prior Knowledge
			5.2 Decision Control
			5.3 Incentive Structures
			5.4 Alignment of Decision-Making Processes
			5.5 Alignment of Decision-Making Objectives
		6 Towards Improved Methods and Metrics for Understanding and Resolving Algorithm Misuse
		7 Conclusion
		References
	Chapter 2: Subjective Decisions in Developing Augmented Intelligence
		1 Introduction
		2 Theoretical Framework
			2.1 Machine Learning-Based Augmented Reality
			2.2 Design Science
			2.3 Decision Making
		3 Development Process
			3.1 Use Case: Finding a Starting Point
			3.2 MVP: Getting a First Version
				3.2.1 Camera Feed
				3.2.2 Execution Engine and Detection Model
				3.2.3 Image Processing
				3.2.4 Visualization
			3.3 Summary of Steps 3-7: From a Proof of Concept to Future Use Cases
		4 Decisions and Heuristics During the Development Process
			4.1 Decision Types
				4.1.1 Framework Decisions
				4.1.2 Technological Decisions
				4.1.3 Design Decisions
			4.2 Decision Pyramids
				4.2.1 Successive Decisions
				4.2.2 Small and Large Worlds
			4.3 Exemplary Development Decisions
				4.3.1 General Environment
				4.3.2 Framework Decisions
				4.3.3 Technological Decisions
				4.3.4 Design Decisions
		5 Discussion
		6 Limitations and Outlook
		References
	Chapter 3: Judgmental Selection of Forecasting Models (Reprint)
		1 Introduction
		2 Literature
			2.1 Commonly Used Forecasting Models
			2.2 Algorithmic Model Selection
			2.3 Model Selection and Judgment
			2.4 Combination and Aggregation
		3 Design of the Behavioral Experiment
			3.1 Selecting Models Judgmentally
			3.2 Data
			3.3 Participants
			3.4 The Process of the Experiment
			3.5 Measuring Forecasting Performance
		4 Analysis
			4.1 Individuals´ Performance
			4.2 Effects of Individuals´ Skill and Time Series Properties
			4.3 50% Statistics + 50% Judgment
			4.4 Wisdom of Crowds
			4.5 Evaluation Summary and Discussion
		5 Implications for Theory, Practice, and Implementation
		6 Conclusions
		Appendix
			Forecasting Models
			Participants Details
		References
	Chapter 4: Effective Judgmental Forecasting in the Context of Fashion Products (Reprint)
		1 Introduction
		2 Theoretical Background
			2.1 Judgment Analysis
			2.2 Forecasting the Demand of Fashion Products
			2.3 Hypotheses
		3 Methods
		4 Empirical Setting
		5 Results
		6 Discussion
		References
	Chapter 5: Judgmental Interventions and Behavioral Change
		1 Background
		2 The Design of a Behavioral Experiment
		3 Results
		4 Discussion
		5 Conclusions
		References
Part II: Judgment in Collective Forecasting
	Chapter 6: Talent Spotting in Crowd Prediction
		1 Introduction
			1.1 Definition of Skill
			1.2 Five Categories of Skill Correlates
		2 Study 1
			2.1 Study 1: Methods
				2.1.1 Literature Search
				2.1.2 Outcome Variables
				2.1.3 Predictors of Skill
					2.1.3.1 Accuracy-Related
					2.1.3.2 Intersubjective
					2.1.3.3 Behavioral
					2.1.3.4 Dispositional
						Fluid Intelligence and Related Measures
					2.1.3.5 Expertise-Related
			2.2 Study 1: Results
				2.2.1 Accuracy-Related
				2.2.2 Intersubjective
				2.2.3 Behavioral
				2.2.4 Dispositional
				2.2.5 Expertise-Related
			2.3 Study 1 Discussion
		3 Study 2
			3.1 Study 2: Methods
				3.1.1 Good Judgment Project Data
				3.1.2 Cross-Validation and Outcome Variable Definition
				3.1.3 Predictor Selection
				3.1.4 Statistical Tests
			3.2 Study 2: Results
				3.2.1 Correlational Analyses
					3.2.1.1 Accuracy-Related Measures
					3.2.1.2 Intersubjective Measures
					3.2.1.3 Behavioral Measures
					3.2.1.4 Dispositional Measures
					3.2.1.5 Expertise Measures
				3.2.2 Multivariate LASSO Models
			3.3 Study 2: Discussion
		4 General Discussion
			4.1 Research Synthesis
			4.2 Use Cases
			4.3 Limitations and Future Directions
			4.4 Conclusion
		Appendix: Methodological Details of Selected Predictors
			Item Response Theory Models
			Contribution Scores
		References
	Chapter 7: Performance-Weighted Aggregation: Ferreting Out Wisdom Within the Crowd
		1 Introduction
			1.1 The Wisdom of Crowds
			1.2 Judgment Quality: Defining and Identifying Expertise in the Crowd
		2 Judgment Aggregation Strategies
			2.1 Mean Strategies
			2.2 Median Strategies
			2.3 Weighting Functions
				2.3.1 Weight All
				2.3.2 Select Crowd
				2.3.3 Hybrid Weighting Functions
			2.4 Choosing a Weighting Function
		3 Indicators of Expertise
			3.1 History-Based Methods
				3.1.1 Cooke´s Classical Method
				3.1.2 Contribution Weighted Model
				3.1.3 Discussion
			3.2 Disposition-Based Methods
				3.2.1 Domain Expertise
				3.2.2 Psychometric Indicators of Individual Differences
				3.2.3 Discussion
			3.3 Coherence-Based Methods
				3.3.1 Coherence Approximation Principle
				3.3.2 Probabilistic Coherence Scale
				3.3.3 Discussion
		4 General Discussion
			4.1 Ensemble Methods
			4.2 Conclusion
		References
	Chapter 8: The Wisdom of Timely Crowds
		1 Introduction
			1.1 Forecaster Evaluation
			1.2 Time Decay
			1.3 Time and Crowd Size
		2 Evaluating Forecasters Over Time
			2.1 Forecast Timing
			2.2 Information Accrual
			2.3 Reliability of Forecaster Assessment
			2.4 Recommendations
		3 The Timeliness of Crowds
			3.1 Selection Methods
			3.2 Weighting Methods
			3.3 Comparing Methods
			3.4 A Probabilistic Hybrid Method
			3.5 Martingale Violations
			3.6 Recommendations
		4 Crowd Size and Timing
			4.1 Resampling the Crowd
		5 General Discussion
			5.1 Signal Sources
			5.2 Bias
			5.3 Beyond Judgmental Forecasting
			5.4 Summary of Recommendations
				5.4.1 Evaluating Forecasters
				5.4.2 Information Accrual
				5.4.3 Forecast Recency and Aggregation
				5.4.4 Time and Crowd Size
		References
Part III: Contextual Factors and Judgmental Performance
	Chapter 9: Supporting Judgment in Predictive Analytics: Scenarios and Judgmental Forecasts
		1 Introduction
		2 Literature Review
		3 Methodology
			3.1 Experimental Design
				3.1.1 Phase 1: Individual Forecasts
				3.1.2 Phase 2: Team Forecasts with Scenario Discussions
				3.1.3 Phase 3: Final/Preferred Individual Forecasts After Scenario Discussions
			3.2 Results
				3.2.1 Assessments of Scenario Tone
				3.2.2 Individual Forecasts
				3.2.3 Team Forecasts with Scenario Discussions
				3.2.4 Final/Preferred Individual Forecasts After Scenario Discussions
		4 Discussion
		5 Conclusion
		References
	Chapter 10: Incorporating External Factors into Time Series Forecasts
		1 Introduction
		2 External Events
			2.1 Event Characteristics
				2.1.1 Magnitude and Duration
				2.1.2 Regularity and Frequency
				2.1.3 Predictability
			2.2 Event Impact
				2.2.1 Magnitude
				2.2.2 Direction
				2.2.3 Duration
				2.2.4 Type
		3 The Role of Judgment in Dealing with External Events
			3.1 Judgmental Adjustment of Statistical Forecasts from Series Disrupted by External Events
			3.2 Using Judgment to Select and Clean Data to Produce Baseline Forecasts
			3.3 Judges´ Use of Analogical Strategies to Make Forecasts When Series Are Disrupted by External Events
		4 Statistics to the Rescue?
			4.1 Non-transparent Models
			4.2 Transparent Models
		5 Summary
		References
	Chapter 11: Forecasting in Organizations: Reinterpreting Collective Judgment Through Mindful Organizing
		1 Introduction: Slow Progress Behind Paradigmatic Blinkers?
		2 Showcasing the Effects of Functionalism in Forecasting Research
			2.1 Extracting Forecasts from Groups
			2.2 Learning from Feedback
		3 Nuanced Organizational Aspects Towards a New Framework in Forecasting
			3.1 Learning from Success Versus Failure
			3.2 Group Deliberation About Performance
			3.3 Team Leaders as Facilitators
		4 Mindful Organizing: A Framework in the Interpretivist-Functionalist Transition Zone
		5 Inducing Mindful Organizing to Debias Group Judgment
			5.1 Focus on Episodic, Dramatic Error
			5.2 Use of Analogical Reasoning and Reference Classes
		6 Conclusion
		References
Index




نظرات کاربران