دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Sergei A. Rakityansky
سری:
ISBN (شابک) : 3031077601, 9783031077609
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 634
[635]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Jost Functions in Quantum Mechanics: A Unified Approach to Scattering, Bound, and Resonant State Problems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب توابع Jost در مکانیک کوانتومی: رویکردی یکپارچه برای مسائل پراکندگی، کران، و حالت تشدید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Based on Jost function theory this book presents an approach useful for different types of quantum mechanical problems. These include the description of scattering, bound, and resonant states, in a unified way. The reader finds here all that is known about Jost functions as well as what is needed to fill the gap between the pure mathematical theory and numerical calculations. Some of the topics covered are: quantum resonances, Regge poles, multichannel scattering, Coulomb interaction, Riemann surfaces, multichannel analog of the effective range theory, one- and two-dimensional problems, many-body problems within the hyperspherical approach, just to mention few of them. These topics are relevant in the fields of quantum few-body theory, nuclear reactions, atomic collisions, and low-dimensional semiconductor nanostructures. In light of this, the book is meant for students, who study quantum mechanics, scattering theory, or nuclear reactions at the advanced level as well as for post-graduate students and researchers in the fields of nuclear and atomic physics. Many of the arguments that are traditional for textbooks on quantum mechanics and scattering theory, are covered here in a different way, using the Jost functions. This gives the reader a new insight into the subject, revealing new features of various mathematical objects and quantum phenomena.
Preface Contents 1 The Basic Concepts 1.1 Quantum Vectors 1.2 Schrödinger Equation 1.3 Boundary Conditions 1.3.1 Bound States 1.3.2 Scattering States 1.3.2.1 Plane and Spherical Waves 1.3.2.2 Scattering Amplitude and Cross Section 1.3.3 Resonances 1.4 Semi-classical Wave Function 1.5 Two-Body Problem Part I Single-Channel Problems 2 Schrödinger Equation and Its Solutions 2.1 Regular and Irregular Solutions of the Radial Equation 2.2 Finite-Range Potential 2.2.1 Transformation of Schrödinger Equation 2.2.1.1 First-Order Differential Equations 2.2.1.2 Alternative Form of the Differential Equations 2.2.1.3 Integral Equations 2.2.2 Uniform Bound for the Regular Solution 2.2.2.1 Integral Equation for the Regular Solution 2.2.2.2 Upper Bound for the Regular Solution 2.2.3 Jost Functions 2.2.4 Jost Solutions 2.2.4.1 Integral Equations 2.2.5 Analyticity of the Jost Functions 3 Riemann Surface and the Spectral Points 3.1 Symmetry Properties of the Jost Functions 3.1.1 Vertical Symmetry 3.1.2 Diagonal Symmetry 3.1.3 Horizontal Symmetry 3.2 High-Energy Asymptotics of the Jost Functions 3.3 Spectral Points 3.3.1 Bound States 3.3.2 Resonances 3.3.3 Virtual States and Sub-threshold Resonances 3.3.4 Resonance Wave Function Normalization 3.3.5 Simplicity of the Bound and Resonant State Zeros 3.3.6 Spectral Point at Threshold Energy 3.3.6.1 Multiplicity of Threshold Zeros 3.3.7 Distribution of Spectral Points Over theRiemann Surface 3.3.8 Number of Spectral Points 3.3.9 Integral Equation for a Bound-State Wave Function 3.3.10 Bargmann's Inequality 4 Scattering States and the S-Matrix 4.1 Partial Waves 4.2 S-Matrix 4.3 Phase Shift 4.4 Resonant Scattering 4.5 Breit-Wigner Resonances 4.6 Analytic Properties of the S-Matrix 4.6.1 Symmetry of the S-Matrix 4.6.2 Spectral Expansion of the S-Matrix 4.6.3 Residues of the S-Matrix and the ANC 4.6.4 Argand Plot 4.6.5 Causality and Analyticity 4.7 Levinson's Theorem 5 Complex Angular Momentum 5.1 Symmetry Properties of the Jost Functions 5.2 Regge Poles 5.3 Simplicity of Regge Zeros 5.3.1 Asymptotic Normalization Constant (ANC) 5.4 Regge Trajectories 5.5 Regge Poles and Resonance Parameters 5.6 Watson Transform 6 Green's Functions 6.1 Free Green's Function for Scattering Solution 6.2 Total Green's Function for Scattering Solution 6.3 Free and Total Green's Function for the Regular Solution 6.4 Free and Total Green's Function for the Jost Solutions 6.5 Three-Dimensional Free Green's Function 6.6 Summary 6.7 Jost–Pais Theorem 7 Short-Range Potential Extending to Infinity 7.1 The Regular Solution 7.1.1 Long-Range Asymptotics 7.1.1.1 WKB Asymptotic Analysis 7.2 Jost Functions 7.2.1 Incoming and Outgoing Waves at Complex Momenta 7.2.2 Exponentially Decaying Potentials 7.3 Analyticity of the Jost Functions 7.4 Complex Rotation 7.4.1 Exponentially Decaying Potentials 7.4.2 Non-analytic Potentials 7.5 Redundant Poles of the S-Matrix 7.6 From Finite-Range to Short-Range Potentials 7.7 Analytic Structure of the Jost Functions 7.7.1 Factorization 7.7.2 Domain of Analyticity and Complex Rotation 7.8 Generalized Levinson's theorem 7.9 Dispersion Relations 8 Single-Channel Potential with Coulombic Tail 8.1 Pure Coulomb Potential 8.1.1 Schrödinger Equation 8.1.2 Jost Functions 8.1.3 Scattering 8.1.3.1 Gamow Factor 8.2 Short-Range Plus Coulomb Potential 8.2.1 First-Order Differential Equations 8.2.2 Integral Equations 8.2.3 Jost Functions 8.2.4 Jost Solutions 8.2.5 Analyticity of the Jost Functions 8.2.6 Analytic Structure of the Jost Functions 8.2.7 Domain of Analyticity and Complex Rotation 8.2.8 Short-Range Plus Attractive Coulomb Potential 8.2.9 Riemann Surface for a System of Charged Particles 8.2.10 Symmetry Properties of the Jost Functions 8.2.11 Asymptotic Normalization Constant (ANC) Part II Multi-Channel Problems 9 Non-central Potential 9.1 Partial Waves 9.1.1 Discrete States 9.1.2 Scattering States 9.2 Fundamental Matrix of Regular Solutions 9.3 Transformation of Schrödinger Equation 9.3.1 Incoming and Outgoing Waves 9.3.2 First-Order Differential Equations 9.3.3 Alternative Form of the Differential Equations 9.3.4 Boundary Conditions 9.3.4.1 Explicit Behaviour of the Regular Solution Near r=0 9.3.4.2 Cancellation of Singularities Near r=0 9.3.4.3 Combination of the Second- and the First-Order Equations 9.4 Asymptotic Behaviour of the Fundamental Matrix 9.5 Jost Matrices 9.5.1 Complex Rotation 9.6 Jost Solutions 9.6.1 Jost Solutions Near r=0 9.7 Physical Solutions 9.7.1 Bound States and Resonances 9.7.2 Scattering States 10 Systems with Non-zero Spins 10.1 Spin-Angular State-Vectors 10.2 Partial-Wave Decomposition for Discrete Spectrum 10.2.1 Radial Schrödinger Equation 10.3 Partial-Wave Decomposition for Scattering States 10.3.1 Radial Schrödinger Equation 10.3.2 Plane Wave with Non-zero Spin 10.3.3 Long-Range Asymptotics of the Wave Function 10.3.4 Scattering Observables 10.4 Symmetries of the Jost Matrices 10.5 Analytic Structure of the Jost Matrices 10.6 Time-Reversal Invariance, Unitarity, and Parity Conservation 10.6.1 Time-Reversal Invariance 10.6.2 Unitarity 10.6.3 Conservation of Parity 10.6.4 Reciprocity and Detailed Balance 10.7 Simplicity of the Bound and Resonant State Zeros 10.8 Asymptotic Normalization Constants 10.9 Scattering Phase Shifts 10.9.1 Example: Two Coupled Partial Waves 10.9.1.1 Eigen-Phase Shifts 10.9.1.2 Nuclear-Bar Phase Shifts 11 Multi-Channel Schrödinger Equation 11.1 Channels with Different Types of Particles 11.2 Partial-Wave Decomposition 11.2.1 Spin-Angular Matrices 11.2.2 Partial-Wave Decomposition for Discrete Spectrum 11.2.2.1 Radial Schrödinger Equation 11.2.3 Partial-Wave Decomposition for Scattering States 11.2.3.1 Radial Schrödinger Equation 12 Multi-Channel Jost Matrix 12.1 First-Order Differential Equations 12.2 Complex Rotation 12.3 Jost Solutions 12.4 Spectral Points 12.4.1 Bound States 12.4.2 Resonances and Their Partial Decay Widths 12.4.3 Simplicity of the Spectral Point Zeros and the ANC 12.5 Multi-Channel Scattering 12.6 Scattering Observables 12.7 Unitarity, Reciprocity, and Detailed Balance 13 Riemann Surfaces for Multi-Channel Systems 13.1 Cuts and Interconnections 13.2 Degenerate Channels 13.3 Distribution of the Spectral Points 13.4 Analytic Structure of the Jost Matrices 13.5 Symmetry Properties of the Jost Matrices 14 Multi-channel Problems of Charged Particles 14.1 Jost Matrix 14.2 Jost Solutions 14.3 Complex Rotation 14.4 Simplicity of the Spectral Point Zeros and the ANC 14.5 Scattering Observables 14.6 Analytic Structure of the Jost Matrices 14.7 Attractive Coulomb Forces 14.8 Riemann Surfaces 14.9 Symmetry Properties of the Jost Matrices 15 Effective-Range Expansion and Its Generalizations 15.1 Single-Channel Short-Range Potential 15.1.1 Effective-Range Expansion 15.1.2 Expansion Coefficients: Calculation 15.1.3 Constructing Potentials with Given Properties 15.1.4 Expansion Coefficients: Fitting the Data 15.2 Single-Channel Coulomb-Tailed Potential 15.2.1 Expansion Coefficients 15.3 Multi-channel short-Range Potential 15.4 Multi-channel Coulomb-Tailed Potential Part III Special Issues 16 Singular and Low-Dimensional Potentials 16.1 Singular Potential 16.1.1 Boundary Conditions 16.2 One-Dimensional Problems 16.2.1 Schrödinger Equation for a 1D System 16.2.2 Boundary Conditions 16.2.3 Jost Matrices 16.2.4 Riemann Surface 16.2.5 Spectral Points 16.2.6 Scattering 16.3 Two-Dimensional Problems 16.3.1 Partial-Wave Decomposition 16.3.2 Jost Functions 16.3.3 Analytic Properties of the Jost Functions 16.3.4 Power-Series Expansions 16.3.5 2D-Scattering 16.3.5.1 Plane and Circular Waves 16.3.5.2 Scattering Wave Function 16.3.5.3 Cross Section 17 Miscellaneous Extensions of the Jost Function Approach 17.1 Many-Body Problems 17.1.1 Hyperspherical Expansion 17.1.2 Hyperradial Equation and the Jost Matrices 17.1.3 Analytic Structure of the Jost Matrices 17.2 Non-local Potential 17.2.1 Schrödinger Equation 17.2.2 Non-locality and Velocity Dependence 17.2.3 Jost Functions 17.2.3.1 Short-Distance Behaviour of Non-local Potentials 17.2.3.2 Symmetry and Analytic Structure of the Jost Functions 17.2.4 Separable Potential 17.2.5 Generalized Jost–Pais Theorem 17.3 Off-Shell Jost Functions 18 Some Exactly Solvable Potential Models 18.1 Exponential Potential 18.2 Single-Channel Square-Well Potential 18.2.1 Analytic Structure 18.3 Single-Channel Square-Well Potential with the Coulomb Tail 18.3.1 Analytic Structure 18.4 Two-Channel Square-Well Potential 18.4.1 Analytic Structure 18.5 Two-Channel Square-Well Potential with the Coulomb Tail 18.5.1 Analytic Structure 18.6 Bargmann Potentials 18.6.1 ``Linear'' Type Bargmann Potentials 18.6.1.1 Potentials with r-2 Tail 18.6.1.2 Eckart Potential A Partial-Wave Expansion B Basics of Complex Analysis C Wronskian of Scalar and Matrix Functions D Bessel Functions D.1 Definition and Some Properties D.2 Analytic Structure of j(kr) and n(kr) D.2.1 Integer Order D.2.2 Half-Integer Order E Coulomb Wave Functions E.1 Definitions and the Main Properties E.2 Analytic Structure E.3 Coulomb-Related Functions Near the Spectral Points F Integral Equations F.1 Separable Kernel F.2 Numerical Solution F.3 Fredholm Theory F.3.1 Fredholm Alternative F.3.2 Fredholm Determinant and Resolvent F.4 Contraction Mapping Principle F.5 Contraction Mapping for Fredholm Equation F.6 Contraction Mapping for Volterra Equation G Poincaré Theorem H Newton Method for Locating Zeros of a Complex Function I Choice of the Units I.1 Nuclear Units I.2 Atomic Units Bibliography Bibliography Index