دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Catherine Smith, Nick Simpson, Raymond Rozen, Pauline Holland, Paula Evans, Steven Morris, Margarent Swale سری: Jacaranda Maths Quest ISBN (شابک) : 9780730357209, 9780730365433 ناشر: Jacaranda سال نشر: 2018 تعداد صفحات: 610 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 17 مگابایت
در صورت تبدیل فایل کتاب Jacaranda Maths Quest Units 1&2 Specialist Mathematics 11 for Queensland به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب واحدهای 1 و 2 ویژه ریاضیات 11 برای کوئینزلند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Jacaranda Maths Quest 11 Specialist Mathematics Units 1 & 2 for Queensland Print & eBookPLUS + studyON این عنوان ترکیبی چاپی و دیجیتالی برای کمک به معلمان در بازگشایی برنامه درسی جدید و کمک به دانش آموزان در مرحله یادگیری طراحی شده است، به طوری که هر دانش آموزی بتواند در کلاس درس، در خانه و در نتیجه در نهایت در امتحان موفقیت را تجربه کند. یک کد دسترسی برای eBookPLUS روی جلد داخلی متن چاپ شده شما رایگان است، بنابراین می توانید از هر دو فرمت چاپی و دیجیتالی نهایت استفاده را ببرید. آخرین نسخههای سری Jacaranda Maths Quest for Queensland شامل این بهروزرسانیهای کلیدی است: • گنجاندن زبان مهم برای کمک به چارچوب مجموعه سوالات مانند آشنا ساده، پیچیده آشنا و پیچیده ناآشنا • بخشهای تمرین ارزیابی جدید که مطابق دستورالعملها و نمونههای QCAA طراحی شدهاند، از جمله وظایف حل مسئله و مدلسازی • سؤالات و فعالیتهای فصل جدید با طبقهبندی جدید مارزانو و کندال همسو هستند: 4 سطح فرآیند شناختی - بازیابی، درک، تجزیه و تحلیل و دانش • ابزار آماده سازی امتحان منحصر به فرد Jacaranda، studyON، اکنون رایگان و کاملاً یکپارچه شده است تا دانش آموزان را برای امتحانات آماده کند. • یک تجربه یادگیری تعاملی بی بدیل را از طریق انواع تعاملات جدید برای کمک به دانش آموزان در درک مفاهیم چالش برانگیز فراهم می کند. • راه حل های کاملاً آنلاین رایگان با هر متن دانش آموز • سوالات تمرین امتحان در هر فصل گنجانده شده است
Jacaranda Maths Quest 11 Specialist Mathematics Units 1 & 2 for Queensland Print & eBookPLUS + studyON This combined print and digital title is designed to help teachers unpack the new curriculum and help students at the point of learning, so that every student can experience success in the classroom, at home and thus ultimately in the exam. An access code for the eBookPLUS comes free on the inside cover of your printed text, so you can make the most of both the print and digital formats. The latest editions from the Jacaranda Maths Quest for Queensland series include these key updates: • Inclusion of important language to help frame question sets such as Simple Familiar, Complex Familiar and Complex Unfamiliar • New assessment practice sections designed as per QCAA guidelines and samples, including Problem Solving and Modelling Tasks • New chapter questions and activities are aligned with Marzano and Kendall’s new taxonomy: 4 levels of cognitive process – retrieval, comprehension, analysis and knowledge • Jacaranda’s unique exam preparation tool, studyON, is now included free and fully integrated to help prepare students for their exams • Provides an unmatched interactive learning experience, through a variety of new interactivities to help students understand challenging concepts • Free online Fully Worked Solutions with every student text • Exam practice questions included in every chapter
Title page Copyright page Contents About this resource eBookPLUS features studyON — an invaluable exam preparation tool About eBookPLUS and studyON Acknowledgements Chapter 1 Permutations and combinations 1.1 Overview 1.1.1 Introduction 1.2 Counting techniques 1.2.1 Review of set notation 1.2.2 The inclusion–exclusion principle 1.2.3 Types of counting techniques 1.2.4 The addition and multiplication principles 1.3 Factorials and permutations 1.3.1 Factorials 1.3.2 Permutations 1.3.3 Arrangements in a circle 1.4 Permutations with restrictions 1.4.1 Like objects 1.4.2 Restrictions 1.5 Combinations 1.5.1 When order does not matter 1.5.2 Probability calculations 1.6 Applications of permutations and combinations 1.6.1 Permutations and combinations in the real world 1.6.2 Lotto systems 1.7 Pascal’s triangle and the pigeon-hole principle 1.7.1 Pascal’s triangle 1.7.2 Pigeon-hole principle 1.8 Review: exam practice Answers Chapter 1 Permutations and combinations REVISION UNIT 1 Combinatorics, vectors and proof TOPIC 1 Combinatorics Chapter 2 Vectors in the plane 2.1 Overview 2.1.1 Introduction 2.2 Vectors and scalars 2.2.1 Introduction 2.2.2 Vector notation 2.2.3 Equality of vectors 2.2.4 Addition of vectors — The triangle rule 2.2.5 The negative of a vector 2.2.6 Multiplying a vector by a scalar 2.3 Position vectors in the plane 2.3.1 Cartesian form of a vector 2.3.2 Ordered pair notation and column vector notation 2.3.3 The magnitude of a vector 2.3.4 The polar form of a vector 2.3.5 Unit vectors 2.3.6 A vector between two points 2.4 Scalar multiplication of vectors 2.4.1 Equality of two vectors 2.4.2 Solving vector problems 2.4.3 Parallel vectors 2.5 The scalar (dot) product 2.5.1 Calculating the dot product 2.5.2 The scalar product of vectors expressed in component form 2.5.3 Finding the angle between two vectors 2.5.4 Special results of the dot product 2.6 The projection of vectors — scalar and vector resolutes 2.6.1 Introduction 2.6.2 The scalar resolute 2.6.3 Vector resolutes 2.7 Review: exam practice Answers Chapter 2 Vectors in the plane Chapter 3 Applications of vectors in the plane 3.1 Overview 3.1.1 Introduction 3.2 Displacement and velocity 3.2.1 Applications of vector addition 3.2.2 Applications using vector subtraction 3.3 Force and the triangle of forces 3.3.1 What is a force? 3.3.2 What is a particle? 3.3.3 What assumptions do we make in Newtonian dynamics? 3.3.4 The resultant force, R~ 3.4 Force and the state of equilibrium 3.4.1 Newton’s First Law of Motion 3.4.2 Resolving a force into its components 3.4.3 Friction 3.5 Relative velocity 3.5.1 Relationship between velocities 3.6 Review: exam practice Answers Chapter 3 Applications of vectorsin the plane REVISION UNIT 1 Combinatorics, vectors and proof TOPIC 2 Vectors in the plane PRACTICE ASSESSMENT 1 Specialist Mathematics: Problem solving and modelling task Conditions Context Task Chapter 4 Introduction to proof 4.1 Overview 4.1.1 Introduction 4.2 Number systems and writing propositions 4.2.1 The real number system 4.2.2 Converting between decimal fractions and common fractions 4.2.3 Propositions 4.2.4 Quantifiers 4.3 Direct proofs using Euclidean geometry 4.3.1 Axioms and postulates 4.3.2 The fundamentals 4.3.3 Two additional postulates 4.3.4 Theorems of Euclidean geometry 4.4 Indirect methods of proof 4.4.1 Disproof by example/proof by counter example 4.4.2 Contrapositive 4.4.3 Proof by contradiction 4.5 Proofs with rational and irrational numbers 4.5.1 Proofs with consecutive numbers 4.5.2 Prove that a number is irrational by contradiction 4.5.3 Proofs with odd and even numbers 4.5.4 Prove that a set of numbers is infinite 4.5.5 Other proofs with real numbers 4.6 Review: exam practice Answers Chapter 4 Introduction to proof Chapter 5 Circle geometry 5.1 Overview 5.1.1 Introduction 5.2 Review of congruent triangle tests 5.2.1 Congruent triangle tests 5.3 Circle properties 1 — angles in a circleand chords 5.3.1 Useful definitions 5.3.2 Useful theorems for angles 5.3.3 Useful theorems for chords 5.4 Circle properties 2 — tangents, secants and segments 5.4.1 Useful definitions 5.4.2 Useful theorems and an axiom 5.5 Circle properties 3 — cyclic quadrilaterals 5.5.1 Useful definitions 5.5.2 Useful theorems 5.6 Geometric proofs using vectors 5.6.1 Review of vectors 5.7 Review: exam practice Answers Chapter 5 Circle geometry REVISION UNIT 1 Combinatorics, vectors and proof TOPIC 3 Introduction to proof PRACTICE ASSESSMENT 2 Specialist Mathematics: Unit 1 examination Conditions Chapter 6 Complex numbers 6.1 Overview 6.1.1 Introduction 6.2 Introduction to complex numbers 6.2.1 Square root of a negative number 6.2.2 Definition of a complex number 6.3 Basic operations using complex numbers 6.3.1 Complex number arithmetic 6.3.2 Equality of two complex numbers 6.4 Complex conjugates and division of complex numbers 6.4.1 The conjugate of a complex number 6.4.2 Division of complex numbers 6.4.3 Multiplicative inverse of a complex number 6.5 The complex plane (the Argand plane) 6.5.1 Plotting numbers in the complex plane 6.5.2 Geometrically multiplying a complex number by a scalar 6.5.3 Addition of complex numbers in the complex plane 6.5.4 Subtraction of complex numbers in the complex plane 6.5.5 Geometrical representation of a conjugate of a complex number 6.5.6 Multiplication by i 6.6 Complex numbers in polar form 6.6.1 The modulus of z 6.6.2 The argument of z 6.6.3 Expressing complex numbers in polar form 6.6.4 Converting from polar form to Cartesian form 6.7 Basic operations on complex numbers in polar form 6.7.1 Addition and subtraction in polar form 6.7.2 Multiplication, division and powers in polar form 6.7.3 Powers of complex numbers 6.7.4 Trigonometric proofs with complex numbers 6.8 Roots of equations 6.8.1 Linear factors of real quadratic polynomials 6.8.2 The general solution of real quadratic equations 6.8.3 The relationship between roots and coefficients 6.8.4 Complex equations reducible to quadratics 6.9 Review: exam practice Answers Chapter 6 Complex numbers REVISION UNIT 2 Complex numbers, trigonometry, functions and matrices TOPIC 1 Complex numbers 1 Chapter 7 Sketching graphs 7.1 Overview 7.1.1 Introduction 7.2 Sketching graphs of y = |f (x)| and y = f (|x|) from y = f (x) 7.2.1 Review of relations and function 7.2.2 An introduction to the modulus function 7.2.3 Sketching y = |x| 7.2.4 Graphing y = |f (x)| from y = f (x) 7.2.5 Graphing y = f (|x|) from y = f (x) 7.2.6 Sketching graphs of y = |f (x)| and y = f (|x|) from y = f (x) 7.3 Sketching graphs of reciprocal functions 7.3.1 Graphing reciprocal functions of linear equations 7.3.2 Graphing reciprocal functions for quadratic and cubic functions 7.4 Sketching graphs of rational functions 7.4.1 Rational functions 7.4.2 Graphing improper fractions 7.4.3 Graphs that cross the horizontal asymptote 7.4.4 Graphs without vertical asymptotes 7.4.5 Oblique asymptotes 7.5 Review: exam practice Answers Chapter 7 Sketching graphs Chapter 8 Trigonometric functions 8.1 Overview 8.1.1 Introduction 8.2 Review of trigonometry 8.2.1 Periodic functions 8.2.2 Radian measure 8.2.3 Exact values and angles of any magnitude 8.2.4 The unit circle 8.2.5 Graphs of the sine and cosine function 8.2.6 Finding the equation of a given trigonometric graph Exercise 8.2 Review of trigonometry 8.3 Solving trigonometric equations 8.3.1 Simple trigonometric equations 8.3.2 Changing the domain 8.3.3 Further trigonometric equations 8.3.4 General solutions of the cosine and sin functions Exercise 8.3 Solving trigonometric equations 8.4 The tangent function 8.4.1 Features of the tangent function 8.4.2 Sketching the tangent function 8.4.3 Solving the tangent function 8.4.4 General solutions of the tangent function Ex ercise 8.4 The tangent function 8.5 The reciprocal functions 8.5.1 Naming the reciprocal functions 8.5.2 Exact values 8.5.3 Sketching the reciprocal functions Exercise 8.5 The reciprocal functions 8.6 Modelling periodic functions 8.6.1 Periodic phenomena in the real-world Exercise 8.6 Modelling periodic functions 8.7 Review: exam practice Answers Chapter 8 Trigonometric functions Chapter 9 Trigonometric identities 9.1 Overview 9.1.1 Introduction 9.2 Pythagorean identities 9.2.1 Using the Pythagorean identity to solve simple trigonometric unknowns 9.2.2 Other Pythagorean identities 9.2.3 Quadratic trigonometric equations 9.3 Compound angle formulas 9.3.1 Angle sum and angle difference formulas 9.3.2 Finding exact values 9.3.3 Using compound angle formulas and Pythagorean identities 9.3.4 Proofs using the compound angle formulas 9.4 Multiple angle formulas 9.4.1 Double angle formulas 9.4.2 Using the double angle formulas to solve trigonometric equations 9.4.3 Proofs using the double angle formulas 9.4.4 Half-angle formulas 9.4.5 Multiple angle formulas 9.5 Product–sum identities 9.5.1 Expressing sums as products and products as sums 9.5.2 Using exact values 9.5.3 Trigonometric proofs 9.5.4 Solving trigonometric equations 9.6 Convert a cos (x) + b sin(x) to R cos (x ± α) o r R sin (x ± α) 9.6.1 Express a cos (x) + b sin (x) in the form R cos (x ± α) or R sin (x ± α) 9.6.2 General transformations and applications 9.7 Review: exam practice Answers Chapter 9 Trigonometric identities REVISION UNIT 2 Complex numbers, trigonometry, functions and matrices TOPIC 2 Trigonometry and functions CHAPTER 10 Matrix arithmetic 10.1 Overview 10.1.1 Introduction 10.2 Addition, subtraction and scalar multiplication of matrices 10.2.1 Introduction to matrices 10.2.2 Operations on matrices 10.2.3 Special matrices 10.3 Matrix multiplication 10.3.1 Multiplication of matrices 10.4 Determinants and inverses 10.4.1 Determinant of a 2 × 2 matrix 10.4.2 Determinant of a 3 × 3 matrix 10.4.3 Inverse of a 2 × 2 matrix 10.4.4 Inverse of a 3 x 3 matrix 10.5 Matrix equations and solving 2 × 2 linearequations 10.5.1 Matrix equations 10.5.2 Solving 2 × 2 linear equations 10.5.3 Geometrical interpretation of solutions 10.6 Review: exam practice Answers Chapter 10 Matrix arithmetic Chapter 11 Matrix transformations 11.1 Overview 11.1.1 Introduction 11.2 Translations 11.2.1 Matrix transformations 11.2.2 Translations 11.2.3 Translations of an object 11.2.4 Translations of a curve 11.3 Reflections and rotations 11.3.1 Reflections 11.3.2 Reflection in the x-axis (y = 0) 11.3.3 Reflection in the y-axis (x = 0) 11.3.4 Reflection in a line that passes through the origin (0,0) 11.3.5 Reflection in the line y = x tan ɵ 11.3.6 Rotations 11.3.7 Special rotations in an anticlockwise direction 11.4 Dilations 11.4.1 Dilations from the x- and y-axes 11.4.2 Dilation from both x- and y-axes 11.5 Combinations of transformations 11.5.1 Double transformation matrices 11.5.2 Inverse transformation matrices 11.5.3 Interpreting the determinant of the transformation matrix 11.6 Review: exam practice Answers Chapter 11 Matrix transformations REVISION UNIT 2 Complex numbers, trigonometry, functions and matrices TOPIC 3 Matrices PRACTICE ASSESSMENT 3 Specialist Mathematics: Unit 2 examination Conditions PRACTICE ASSESSMENT 4 Specialist Mathematics: Units 1& 2 examination Conditions GLOSSARY INDEX