دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Catherine Smith. Paul Johnasen
سری:
ISBN (شابک) : 9780730380033
ناشر:
سال نشر:
تعداد صفحات: [713]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 146 Mb
در صورت تبدیل فایل کتاب Jacaranda Math Quest Unit 3 & 4 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب جکاراندا تلاش ریاضی واحد 3 و 4 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Jacaranda Maths Quest طراحی شده است تا به معلمان کمک کند تا برنامه درسی جدید را باز کنند و به دانش آموزان در مرحله یادگیری کمک کند، به طوری که هر دانش آموزی بتواند در کلاس درس، در خانه و در نتیجه در نهایت در امتحان موفقیت را تجربه کند.
Jacaranda Maths Quest is designed to help teachers unpack the new curriculum and help students at the point of learning, so that every student can experience success in the classroom, at home and thus ultimately in the exam.
Cover Title page Copyright page Contents About this resource eBookPLUS features studyON — an invaluable exam preparation tool About eBookPLUS and studyON Acknowledgements 1 Proof by mathematical induction 1.1 Overview 1.2 Introduction to proof by mathematical induction 1.2.1 Proof by induction basics 1.2.2 Using Σ notation 1.2.3 Review of set theory and logic symbols 1.3 Proof of divisibility 1.3.1 Divisibility results 1.3.2 Using divisibility notation 1.4 Further proof by induction 1.4.1 Using other notations 1.4.2 Forming a proposition and proving it by induction 1.4.3 Pascal’s triangle 1.5 Review: exam practice Answers REVISION UNIT 3 Mathematical induction, and further vectors, matrices and complex numbers TOPIC 1 Proof by mathematical induction 2 Vectors in three dimensions 2.1 Overview 2.2 Introduction to vectors in three dimensions 2.2.1 Review of vectors in two-dimensions 2.2.2 Introduction to vectors in three-dimensions 2.2.3 The dot product 2.2.4 Review of vector projections (vector resolutes) 2.2.5 Three dimensional vectors in polar form 2.3 Geometric proofs using vectors 2.3.1 Geometrical shapes 2.4 Cartesian and parametric equations 2.4.1 Cartesian coordinates for three-dimensional space 2.4.2 Distances between points in three-dimensions 2.4.3 The Cartesian equation of a sphere 2.4.4 Parametric equations in two-dimensions 2.4.5 Parametric equations as vector functions 2.5 The vector equation of a straight line 2.5.1 Lines in two dimensions 2.5.2 The vector equation of a straight line in two dimensions 2.5.3 Lines in three dimensions 2.5.4 Vector equations in parametric and Cartesian form 2.6 The vector product 2.6.1 Multiplying vectors to produce vectors 2.6.2 Applications: the area of parallelograms and triangles 2.6.3 The vector product in î − ĵ − kˆ form 2.6.4 Calculating the vector product using determinants 2.6.5 Properties of the vector product 2.6.6 The scalar triple product 2.7 Applications of vectors 2.7.1 The vector and Cartesian equation of a plane in three dimensions 2.7.2 Torque 2.7.3 Applications of vector functions of time 2.8 Review: exam practice Answers 3 Solving systems of linear equations and the application of matrices 3.1 Overview 3.2 Solving linear equations using matrix algebra 3.2.1 System of linear equations 3.2.2 Solving systems of linear equations using inverse matrices 3.2.3 Matrix algebra 3.3 Solving a system of linear equations using Gaussian elimination 3.3.1 Gaussian elimination 3.4 The three cases for solutions of systems of linear equations 3.4.1 Geometric interpretation of solutions of lines in two-dimensions 3.4.2 Geometric interpretation of solutions of lines in three-dimensions 3.4.3 Geometric interpretation of solutions of planes in three-dimensions 3.4.4 The intersection of lines and planes 3.5 Using technology for matrix calculations 3.5.1 Matrix operations using a graphic calculator 3.5.2 Powers of matrices 3.6 Dominance and Leslie matrices 3.6.1 Dominance matrices 3.6.2 Leslie matrices 3.7 Applications of matrices 3.7.1 Markov chains and eigenvectors 3.7.2 Eigenvalues 3.7.3 Leontief Matrices 3.7.4 Cryptology 3.8 Review: exam practice Answers 4 Vector calculus 4.1 Overview 4.2 Position vectors as functions of time: circles, ellipses and hyperbolas 4.2.1 Position vectors as functions 4.2.2 Parametric and Cartesian equations of circles, ellipses and hyperbolas 4.3 Differentiation of vectors 4.3.1 Vector functions 4.3.2 Rules for differentiating vectors 4.3.3 Vectors describing motion 4.3.4 Extension to three dimensions 4.3.5 The gradient of the curve 4.3.6 Applications of vector calculus 4.4 Integration of vectors 4.4.1 The constant vector 4.4.2 Rules for integrating vectors 4.4.3 Determining the Cartesian equation 4.5 Straight line motion with constant and variable acceleration 4.5.1 Rectilinear motion 4.5.2 Motion with variable acceleration 4.5.3 Motion under constant acceleration 4.6 Projectile motion 4.6.1 General theory of a projectile 4.6.2 Proofs involving projectile motion 4.6.3 Incorporating air resistance and three-dimensional motion 4.7 Circular motion 4.7.1 Uniform circular motion 4.7.2 Angular velocity 4.7.3 Velocity 4.7.4 Acceleration 4.8 Review: exam practice Answers REVISION UNIT 3 Mathematical induction, and further vectors, matrices and complex numbers TOPIC 2 Vectors and matrices 5 Complex numbers 5.1 Overview 5.2 Complex numbers in cartesian form 5.2.1 The definition of a complex number 5.2.2 Review of basic operations on complex numbers in cartesian form 5.2.3 The Complex conjugate of a complex number 5.2.4 Inverses and division of complex numbers 5.3 Complex numbers in polar form 5.3.1 Review of complex numbers in polar form 5.3.2 The complex conjugate in polar form 5.3.3 Basic operations on complex numbers in polar form 5.3.4 Proving identities involving the modulus and argument 5.4 De Moivre’s theorem 5.5 The complex plane (the Argand plane) 5.5.1 Circles 5.5.2 Lines 5.5.3 Intersection of lines and circles 5.5.4 Rays 5.6 Roots of complex numbers 5.6.1 Determine and examine the nthroots of complex numbers 5.6.2 Determine and examine the nth roots of unity 5.6.3 Solving zn = a where a ∈ R 5.7 Factorisation of polynomials 5.7.1 The fundamental theorem of algebra 5.7.2 Solving quadratic Equations 5.7.3 Solving cubic equations 5.7.4 Solving quartic equations Answers REVISION UNIT 3 Mathematical induction, and further vectors, matrices and complex numbers TOPIC 3 Complex numbers 2 PRACTICE ASSESSMENT 1 Specialist Mathematics: Problem solving and modelling task Conditions Context Task Approach to problem-solving and modelling PRACTICE ASSESSMENT 2 Specialist Mathematics: Unit 3 examination Conditions 6 Integration techniques 6.1 Overview 6.2 Integration by linear substitution 6.2.1 Determining integrals in the form ∫(ax + b)n dx 6.2.2 Evaluating definite integrals using a linear substitution 6.2.3 Other linear substitutions 6.2.4 Definite integrals using other linear substitutions 6.3 Integration by non-linear substitutions 6.3.1 Indefinite integration using non-linear substitutions 6.3.2 Definite integration using non-linear substitutions 6.4 Integration using the trigonometric identities 6.4.1 Review of trigonometric identities 6.4.2 Integrating even powers of sin(ax) or cos(ax) 6.4.3 Integrating sinn (ax) cosn (ax), n ≥ 1 6.4.4 Integrating sin(ax) cosn (ax) or cos(ax) sinn (ax), n > 1 6.4.5 Integrating odd powers of sin(ax) or cos(ax) 6.4.6 Integrating products of sin(ax) and cos(bx) 6.4.7 Integrating powers of tan(ax) or cot(ax) 6.5 Integration of inverse trigonometric functions 6.5.1 Inverse functions 6.5.5 Derivatives of the inverse trigonometric functions 6.5.6 Integration using the inverse trigonometric functions 6.6 Integration by parts 6.6.1 Introduction to integration by parts 6.7 Integration involving partial fractions 6.7.1 Integration by partial fractions 6.7.2 Non-proper rational functions 6.7.3 Rational functions involving non-linear factors 6.8 Review: exam practice Answers 7 Applications of integral calculus 7.1 Overview 7.2 Area between a function and the axes 7.2.1 The domain of the integrand 7.2.2 Areas above the x-axis 7.2.3 Areas below the x-axis 7.2.4 Areas above and below the x-axis 7.3 Area between functions 7.3.1 Area between two functions that do not intersect in the required interval 7.3.2 Area between two functions that intersect in the required interval 7.3.3 Using Technology 7.4 Volumes of solids of revolution 7.4.1 Rotations about the x-axis 7.4.2 Rotations about the y-axis 7.4.3 Applications 7.5 Volumes of revolution 7.5.1 Rotations about the x-axis 7.5.2 Rotations about the y-axis 7.5.3 Composite figures 7.6 Approximation using Simpson’s rule 7.6.1 Simpson’s rule 7.7 Exponential probability density function 7.7.1 Exponential probability density function 7.8 Review: exam practice Answers REVISION UNIT 4 Further calculus and statistical inference TOPIC 1 Integration and applications of integration 8 Rates of change and differential equations 8.1 Overview 8.2 Implicit differentiation 8.2.1 Introduction to implicit differentiation 8.2.2 Parametric differentiation 8.3 Related rates as instances of the chain rule 8.3.1 Introduction 8.4 Solving differential equations of the form dy/dx = f(x) 8.4.1 Classification of differential equations 8.4.2 Classifying solutions to a differential equation 8.4.3 Differential equations of the form dy/dx = f(x) 8.5 Solving differential equations of the form dy/dx = g(y) 8.5.1 Invert, integrate and transpose 8.6 Solving differential equations of the form dy/dx = f(x)g(y) 8.6.1 Separation of variables 8.7 Review: exam practice Answers 9 Applications of first-order differential equations 9.1 Overview 9.2 Growth and decay 9.2.1 Introduction 9.2.2 The law of natural growth 9.2.3 Population growth 9.2.4 Radioactive decay 9.2.5 Half-lives 9.3 Other applications of first-order differential equations 9.3.1 Miscellaneous types 9.3.2 Other population models 9.3.3 Population models with regular removal 9.4 Bounded growth and Newton’s law of cooling 9.4.1 Bounded growth models 9.4.2 Newton’s law of cooling 9.5 Chemical reactions and dilution problems 9.5.1 Input–output mixing problems 9.5.2 Equal input and output flow rates 9.5.3 Chemical reaction rates 9.6 The logistic equation 9.6.1 Introduction 9.6.2 Logistic growth 9.6.3 Points of inflection 9.6.4 Analysis of the logistic solution 9.7 Slope fields 9.7.1 Introduction 9.7.2 Sketching slope fields using technology 9.7.3 Interpreting a slope field 9.8 Review: exam practice Answers 10 Modelling motion 1 10.1 Overview 10.2 A body in equilibrium under concurrent forces 10.2.1 Statics 10.2.2 Some definitions 10.2.3 Equilibrium 10.2.4 Angles other than right angles 10.2.5 Lami’s theorem 10.2.6 Other types of forces 10.2.7 Resolving forces 10.2.8 Resolving all the forces 10.3 Action and reaction forces 10.3.1 Other types of forces-Action and reaction 10.3.2 Inclined planes 10.3.3 Connected particles 10.4 Momentum and resultant force 10.4.1 Newton’s laws of motion 10.4.2 Momentum 10.4.3 Constant acceleration formulas 10.4.4 Newton’s third law of motion 10.4.5 Motion on inclined planes 10.4.6 Resolution of all the forces 10.5 Forces on connected particles 10.5.1 Two or more particles 10.5.2 Particles connected by smooth pulleys 10.5.3 Atwood’s machine 10.5.4 Connected vehicles 10.6 Review: exam practice Answers 11 Modelling motion 2 11.1 Overview 11.2 Forces that depend on time 11.2.1 Setting up the equation of motion 11.2.2 Integrals involving trigonometric functions 11.2.3 Horizontal rectilinear motion 11.3 Forces that depend on velocity 11.3.1 Setting up the equation of motion 11.3.2 Horizontal rectilinear motion 11.3.3 General cases 11.3.4 Vertical motion 11.4 Forces that depend on displacement 11.4.1 Setting up the equation of motion 11.4.2 Relationships between time, displacement, velocity and acceleration 11.4.3 Expressing x in terms of t 11.5 Simple harmonic motion 11.5.1 Definition of simple harmonic motion 11.6 Review: exam practice Answers REVISION UNIT 4 Further calculus and statistical inference TOPIC 2 Rates of change and differential equations 12 Statistical inference 12.1 Overview 12.2 Review of continuous random variables and the normal distribution 12.2.1 Continuous random variables 12.2.2 The normal distribution 12.2.3 Linear combinations of random variables 12.3 Sample means and simulations 12.3.1 Estimating population parameters 12.3.2 The distribution of sample means 12.3.3 Verifying the formulae 12.4 Confidence intervals 12.4.1 Confidence intervals 12.4.2 Calculation of confidence intervals 12.4.3 Verifying the formulae 12.5 Applications of confidence intervals 12.5.1 Using confidence intervals to estimate other confidence intervals 12.5.2 Simulating sampling 12.5.3 Confirming normality 12.6 Review: exam practice Answers REVISION UNIT 4 Further calculus and statistical inference TOPIC 3 Statistical inference PRACTICE ASSESSMENT 3 Specialist Mathematics: Unit 4 examination Conditions PRACTICE ASSESSMENT 4 Specialist Mathematics: Units 3 & 4 examination Conditions Glossary Index