دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Clerc. Maurice
سری: Computer engineering series (London England)
ISBN (شابک) : 9781119612360, 1119612470
ناشر: ISTE Ltd. ; Hoboken : John Wiley & Sons
سال نشر: 2019
تعداد صفحات: [215]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 Mb
در صورت تبدیل فایل کتاب Iterative optimizers : difficulty measures and benchmarks به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بهینه سازهای تکراری: اندازه گیری های دشواری و معیارها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Almost every month, a new optimization algorithm is proposed,
often accompanied by the claim that it is superior to all those
that came before it. However, this claim is generally based on
the algorithm's performance on a specific set of test cases,
which are not necessarily representative of the types of
problems the algorithm will face in real life. This book
presents the theoretical analysis and practical methods
(along with source
codes) necessary to estimate the difficulty of problems in a
test set, as well as to build bespoke test sets consisting of
problems with varied difficulties. The book formally
establishes a typology of optimization problems, from which a
reliable test set can be deduced. At the same time, it
highlights how classic test sets are skewed in favor of
different classes of problems, and how, as a result, optimizers
that have performed well on test problems may perform poorly in
real life scenarios. Read
more...
Abstract: Almost every month, a new optimization algorithm is
proposed, often accompanied by the claim that it is superior to
all those that came before it. However, this claim is generally
based on the algorithm's performance on a specific set of test
cases, which are not necessarily representative of the types of
problems the algorithm will face in real life. This book
presents the theoretical analysis and practical methods (along
with source codes) necessary to estimate the difficulty of
problems in a test set, as well as to build bespoke test sets
consisting of problems with varied difficulties. The book
formally establishes a typology of optimization problems, from
which a reliable test set can be deduced. At the same time, it
highlights how classic test sets are skewed in favor of
different classes of problems, and how, as a result, optimizers
that have performed well on test problems may perform poorly in
real life scenarios