دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 18 نویسندگان: Douglas A. Lind, William G. Marchal, Samuel A. Wathen سری: ISBN (شابک) : 1260570487, 9781260570489 ناشر: McGraw-Hill Education سال نشر: 2020 تعداد صفحات: 881 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 47 مگابایت
در صورت تبدیل فایل کتاب ISE Statistical Techniques in Business and Economics (ISE HED IRWIN STATISTICS) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تکنیک های آماری ISE در تجارت و اقتصاد (ISE HED IRWIN STATISTICS) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تکنیک های آماری در تجارت و اقتصاد، 18e یک پرفروش است که در ابتدا در سال 1967 منتشر شد تا به دانشجویان رشته های مدیریت، بازاریابی، امور مالی، حسابداری، اقتصاد و سایر زمینه های مدیریت بازرگانی با یک نظرسنجی مقدماتی ارائه کند. آمار توصیفی و استنباطی ارائه مشخصه آن دارای یک رویکرد گام به گام است که به قدری واضح نوشته شده است که هر دانش آموزی می تواند در آمار کسب و کار یاد بگیرد و موفق شود. زبان ساده و استفاده از مثالهای متعدد بر روی برنامههای تجاری تمرکز دارد، اما به دنیای کنونی دانشجویان نیز مربوط میشود. این رویکرد گام به گام عملکرد را افزایش می دهد، آمادگی را تسریع می کند و انگیزه را به طور قابل توجهی بهبود می بخشد. مثالهای دنیای واقعی لیند، پوشش جامع و آموزش عالی که اکنون شامل پوشش تجزیه و تحلیل دادهها میشود، همراه با یک راهحل دیجیتال کامل، به دانشآموزان کمک میکند تا به نتایج بالاتری در دوره دست یابند.
Statistical Techniques in Business and Economics, 18e is a best seller, originally published in 1967 to provide students majoring in management, marketing, finance, accounting, economics, and other fields of business administration with an introductory survey of descriptive and inferential statistics. Its hallmark presentation boasts a step by step approach that was written so clearly that any student can learn and succeed in Business Statistics. Its simple language and use of multiple examples focus on business applications, but also relate to the current world of the college student. This step-by-step approach enhances performance, accelerates preparedness, and significantly improves motivation. Lind's real-world examples, comprehensive coverage, and superior pedagogy that now includes data analytics coverage, combined with a complete digital solution help students achieve higher outcomes in the course.
Cover Statistical Techniques in Business & Economics Dedication A Note from the Authors Additional Resources Acknowledgments Brief Contents Contents Chapter 1: What Is Statistics? Introduction Why Study Statistics? What Is Meant by Statistics? Types of Statistics Descriptive Statistics Inferential Statistics Types of Variables Levels of Measurement Nominal-Level Data Ordinal-Level Data Interval-Level Data Ratio-Level Data Exercises Ethics and Statistics Basic Business Analytics Chapter Summary Chapter Exercises Data Analytics Chapter 2: Describing Data: Frequency Tables, Frequency Distributions, and Graphic Presentation Introduction Constructing Frequency Tables Relative Class Frequencies Graphic Presentation of Qualitative Data Exercises Constructing Frequency Distributions Relative Frequency Distribution Exercises Graphic Presentation of a Distribution Histogram Frequency Polygon Exercises Cumulative Distributions Exercises Chapter Summary Chapter Exercises Data Analytics Chapter 3: Describing Data: Numerical Measures Introduction Measures of Location The Population Mean The Sample Mean Properties of the Arithmetic Mean Exercises The Median The Mode Software Solution Exercises The Relative Positions of the Mean, Median, and Mode Exercises The Weighted Mean Exercises The Geometric Mean Exercises Why Study Dispersion? Range Variance Exercises Population Variance Population Standard Deviation Exercises Sample Variance and Standard Deviation Software Solution Exercises Interpretation and Uses of the Standard Deviation Chebyshev’s Theorem The Empirical Rule Exercises The Mean and Standard Deviation of Grouped Data Arithmetic Mean of Grouped Data Standard Deviation of Grouped Data Exercises Ethics and Reporting Results Chapter Summary Pronunciation Key Chapter Exercises Data Analytics Chapter 4: Describing Data: Displaying and Exploring Data Introduction Dot Plots Exercises Measures of Position Quartiles, Deciles, and Percentiles Exercises Box Plots Exercises Skewness Exercises Describing the Relationship between Two Variables Correlation Coefficient Contingency Tables Exercises Chapter Summary Pronunciation Key Chapter Exercises Data Analytics A Review of Chapters 1-4 PROBLEMS CASES Practice Test Chapter 5: A Survey of Probability Concepts Introduction What Is a Probability? Approaches to Assigning Probabilities Classical Probability Empirical Probability Subjective Probability Exercises Rules of Addition for Computing Probabilities Special Rule of Addition Complement Rule The General Rule of Addition Exercises Rules of Multiplication to Calculate Probability Special Rule of Multiplication General Rule of Multiplication Contingency Tables Tree Diagrams Exercises Bayes’ Theorem Exercises Principles of Counting The Multiplication Formula The Permutation Formula The Combination Formula Exercises Chapter Summary Pronunciation Key Chapter Exercises Data Analytics Chapter 6: Discrete Probability Distributions Introduction What Is a Probability Distribution? Random Variables Discrete Random Variable Continuous Random Variable The Mean, Variance, and Standard Deviation of a Discrete Probability Distribution Mean Variance and Standard Deviation Exercises Binomial Probability Distribution How Is a Binomial Probability Computed? Binomial Probability Tables Exercises Cumulative Binomial Probability Distributions Exercises Hypergeometric Probability Distribution Exercises Poisson Probability Distribution Exercises Chapter Summary Chapter Exercises Data Analytics Chapter 7: Continuous Probability Distributions Introduction The Family of Uniform Probability Distributions Exercises The Family of Normal Probability Distributions The Standard Normal Probability Distribution Applications of the Standard Normal Distribution The Empirical Rule Exercises Finding Areas under the Normal Curve Exercises Exercises Exercises The Family of Exponential Distributions Exercises Chapter Summary Chapter Exercises Data Analytics A Review of Chapters 5-7 PROBLEMS CASES PRACTICE TEST Chapter 8: Sampling, Sampling Methods, and the Central Limit Theorem Introduction Research and Sampling Sampling Methods Simple Random Sampling Systematic Random Sampling Stratified Random Sampling Cluster Sampling Exercises Sample Mean as a Random Variable Sampling Distribution of the Sample Mean Exercises The Central Limit Theorem Standard Error of The Mean Exercises Using the Sampling Distribution of the Sample Mean Exercises Chapter Summary Pronunciation Key Chapter Exercises Data Analytics Chapter 9: Estimation and Confidence Intervals Introduction Point Estimate for a Population Mean Confidence Intervals for a Population Mean Population Standard Deviation, Known A Computer Simulation Exercises Population Standard Deviation, Unknown Exercises A Confidence Interval for a Population Proportion Exercises Choosing an Appropriate Sample Size Sample Size to Estimate a Population Mean Sample Size to Estimate a Population Proportion Exercises Finite-Population Correction Factor Exercises Chapter Summary Chapter Exercises Data Analytics A Review of Chapters 8-9 PROBLEMS CASES PRACTICE TEST Chapter 10: One-Sample Tests of Hypothesis Introduction What Is Hypothesis Testing? Six-Step Procedure for Testing a Hypothesis Step 1: State the Null Hypothesis (H0) and the Alternate Hypothesis (H1) Step 2: Select a Level of Significance Step 3: Select the Test Statistic Step 4: Formulate the Decision Rule Step 5: Make a Decision Step 6: Interpret the Result One-Tailed and Two-Tailed Hypothesis Tests Hypothesis Testing for a Population Mean: Known Population Standard Deviation A Two-Tailed Test A One-Tailed Test p-Value in Hypothesis Testing Exercises Hypothesis Testing for a Population Mean: Population Standard Deviation Unknown Exercises A Statistical Software Solution Exercises Type II Error Exercises Chapter Summary Pronunciation Key Chapter Exercises Data Analytics Chapter 11: Two-Sample Tests of Hypothesis Introduction Two-Sample Tests of Hypothesis: Independent Samples Exercises Comparing Population Means with Unknown Population Standard Deviations Two-Sample Pooled Test Exercises Unequal Population Standard Deviations Exercises Two-Sample Tests of Hypothesis: Dependent Samples Comparing Dependent and Independent Samples Exercises Chapter Summary Pronunciation Key Chapter Exercises Data Analytics Chapter 12: Analysis of Variance Introduction Comparing Two Population Variances The F-Distribution Testing a Hypothesis of Equal Population Variances Exercises ANOVA: Analysis of Variance ANOVA Assumptions The ANOVA Test Exercises Inferences about Pairs of Treatment Means Exercises Two-Way Analysis of Variance Exercises Two-Way ANOVA with Interaction Interaction Plots Testing for Interaction Hypothesis Tests for Interaction Exercises Chapter Summary Pronunciation Key Chapter Exercises Data Analytics A Review of Chapters 10-12 PROBLEMS CASES PRACTICE TEST Chapter 13: Correlation and Linear Regression Introduction What Is Correlation Analysis? The Correlation Coefficient Exercises Testing the Significance of the Correlation Coefficient Exercises Regression Analysis Least Squares Principle Drawing the Regression Line Exercises Testing the Significance of the Slope Exercises Evaluating a Regression Equation’s Ability to Predict The Standard Error of Estimate The Coefficient of Determination Exercises Relationships among the Correlation Coefficient, the Coefficient of Determination, and the Standard Error of Estimate Exercises Interval Estimates of Prediction Assumptions Underlying Linear Regression Constructing Confidence and Prediction Intervals Exercises Transforming Data Exercises Chapter Summary Pronunciation Key Chapter Exercises Data Analytics Chapter 14: Multiple Regression Analysis Introduction Multiple Regression Analysis Exercises Evaluating a Multiple Regression Equation The ANOVA Table Multiple Standard Error of Estimate Coefficient of Multiple Determination Adjusted Coefficient of Determination Exercises Inferences in Multiple Linear Regression Global Test: Testing the Multiple Regression Model Evaluating Individual Regression Coefficients Exercises Evaluating the Assumptions of Multiple Regression Linear Relationship Variation in Residuals Same for Large and Small y Values Distribution of Residuals Multicollinearity Independent Observations Qualitative Independent Variables Regression Models with Interaction Stepwise Regression Exercises Review of Multiple Regression Chapter Summary Pronunciation Key Chapter Exercises Data Analytics A Review of Chapters 13-14 PROBLEMS CASES PRACTICE TEST Chapter 15: Nonparametric Methods: Nominal Level Hypothesis Tests Introduction Test a Hypothesis of a Population Proportion Exercises Two-Sample Tests about Proportions Exercises Goodness-of-Fit Tests: Comparing Observed and Expected Frequency Distributions Hypothesis Test of Equal Expected Frequencies Exercises Hypothesis Test of Unequal Expected Frequencies Limitations of Chi-Square Exercises Testing the Hypothesis That a Distribution Is Normal Exercises Contingency Table Analysis Exercises Chapter Summary Pronunciation Key Chapter Exercises Data Analytics Chapter 16: Nonparametric Methods: Analysis of Ordinal Data Introduction The Sign Test Exercises Testing a Hypothesis About a Median Exercises Wilcoxon Signed-Rank Test for Dependent Populations Exercises Wilcoxon Rank-Sum Test for Independent Populations Exercises Kruskal-Wallis Test: Analysis of Variance by Ranks Exercises Rank-Order Correlation Testing the Significance of rs Exercises Chapter Summary Pronunciation Key Chapter Exercises Data Analytics A Review of Chapters 15-16 PROBLEMS CASES PRACTICE TEST Chapter 17: Index Numbers Introduction Simple Index Numbers Why Convert Data to Indexes? Construction of Index Numbers Exercises Unweighted Indexes Simple Average of the Price Indexes Simple Aggregate Index Weighted Indexes Laspeyres Price Index Paasche Price Index Fisher’s Ideal Index Exercises Value Index Exercises Special-Purpose Indexes Consumer Price Index Producer Price Index Dow Jones Industrial Average (DJIA) Exercises Consumer Price Index Special Uses of the Consumer Price Index Shifting the Base Exercises Chapter Summary Chapter Exercises Data Analytics Chapter 18: Forecasting with Time Series Analysis Introduction Time Series Patterns Trend Seasonality Cycles Irregular Component Exercises Modeling Stationary Time Series: Forecasts Using Simple Moving Averages Forecasting Error EXERCISES Modeling Stationary Time Series: Simple Exponential Smoothing EXERCISES Modeling Time Series with Trend: Regression Analysis Regression Analysis EXERCISES The Durbin-Watson Statistic EXERCISES Modeling Time Series with Seasonality: Seasonal Indexing EXERCISES Chapter Summary Chapter Exercises Data Analytics A REVIEW OF CHAPTERS 17-18 PROBLEMS PRACTICE TEST Chapter 19: Statistical Process Control and Quality Management Introduction A Brief History of Quality Control Six Sigma Sources of Variation Diagnostic Charts Pareto Charts Fishbone Diagrams Exercises Purpose and Types of Quality Control Charts Control Charts for Variables Range Charts In-Control and Out-of-Control Situations Exercises Attribute Control Charts p-Charts c-Bar Charts Exercises Acceptance Sampling Exercises Chapter Summary Pronunciation Key Chapter Exercises Appendixes Appendix A: Data Sets Appendix B: Tables Appendix C: Answers to Odd-Numbered Chapter Exercises Review Exercises Solutions to Practice Tests Appendix D: Answers to Self-Review Glossary Index