دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Liming Lu (editor)
سری:
ISBN (شابک) : 0128202262, 9780128202265
ناشر: Woodhead Publishing
سال نشر: 2021
تعداد صفحات: 842
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 مگابایت
در صورت تبدیل فایل کتاب Iron Ore: Mineralogy, Processing and Environmental Sustainability (Woodhead Publishing Series in Metals and Surface Engineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سنگ آهن: کانی شناسی، پردازش و پایداری محیطی (مجموعه انتشارات Woodhead در مهندسی فلزات و سطح) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سنگ آهن: کانی شناسی، پردازش و پایداری محیطی، ویرایش دوم تمام جنبه های پیرامون دومین کالای مهم پس از نفت را پوشش می دهد. سنگ آهن به عنوان یک نهاده ضروری برای تولید فولاد خام، بزرگترین بازار فلزی جهان با تریلیون دلار در سال را تغذیه می کند و ستون فقرات زیرساخت های جهانی است. این کتاب به بررسی انواع سنگهای جدید و توسعه فرآیندها/فناوریهای کارآمدتر برای به حداقل رساندن ردپای محیطی میپردازد. این نسخه جدید شامل تمام مطالعات موردی و فناوری های جدید، به همراه فصل های جدید در مورد تجزیه و تحلیل شیمیایی سنگ آهن، بهره برداری حرارتی و خشک سنگ آهن، و بحث در مورد فن آوری های جایگزین آهن است.
علاوه بر این، اطلاعات در مورد بازیافت ضایعات جامد و سرباره حاوی P تولید شده در کارخانههای فولاد، معادن پایدار و فناوریهای تولید آهن کم انتشار از دیدگاههای منطقهای، به ویژه اروپا و ژاپن، گنجانده شده است. این کار منبع ارزشمندی برای هر کسی که در صنعت سنگ آهن دخیل است خواهد بود.
Iron Ore: Mineralogy, Processing and Environmental Sustainability, Second Edition covers all aspects surrounding the second most important commodity behind oil. As an essential input for the production of crude steel, iron ore feeds the world's largest trillion-dollar-a-year metal market and is the backbone of the global infrastructure. The book explores new ore types and the development of more efficient processes/technologies to minimize environmental footprints. This new edition includes all new case studies and technologies, along with new chapters on the chemical analysis of iron ore, thermal and dry beneficiation of iron ore, and discussions of alternative iron making technologies.
In addition, information on recycling solid wastes and P-bearing slag generated in steel mills, sustainable mining, and low emission iron making technologies from regional perspectives, particularly Europe and Japan, are included. This work will be a valuable resource for anyone involved in the iron ore industry.
Front cover Half title Full title Copyright Contents Contributors Preface Preface to the second edition Biography 1 - Introduction: Overview of the global iron ore industry 1.1 Introduction 1.1.1 World steel and iron ore production 1.1.2 World iron ore trade 1.1.3 World iron ore reserves and resources 1.2 Iron ore mining operations by country 1.2.1 Australia 1.2.2 Brazil 1.2.3 China 1.2.4 India 1.2.5 Russia 1.2.6 South Africa 1.2.7 Ukraine 1.2.8 Canada 1.2.9 USA 1.2.10 Sweden 1.3 Innovative technologies adopted by iron ore producers 1.3.1 Autonomous mining vehicles 1.3.2 Robotic technology 1.3.3 Remote operating centers 1.3.4 Sensing technology/real-time data acquisition 1.3.5 Digital technology 1.3.5.1 Spatial data visualization 1.3.5.2 Geographic information systems 1.3.5.3 Artificial intelligence and machine learning 1.4 Challenges facing iron ore industry 1.4.1 Depleting high-grade iron ore reserves 1.4.2 GHG emissions and climate change 1.4.3 Health and safety 1.4.4 Volatility of commodity prices 1.4.5 Access to capital References Part One - Characterization and analysis of iron ore 2 - Mineralogical, chemical, and physical metallurgical characteristics of iron ore 2.1 Introduction 2.2 Mineralogy 2.2.1 Common iron ore and gangue minerals 2.2.2 Iron ore deposits 2.2.2.1 Deposit types 2.2.2.2 Iron formation-hosted iron ore deposits 2.2.2.3 Iron formation and replacement ore mineralogy 2.2.2.4 Unenriched iron formation ores 2.2.2.5 Martite–goethite supergene ores 2.2.2.6 Residual hematite ores 2.2.2.7 Microplaty hematite ore 2.2.2.8 Phanerozoic ooidal ironstones including channel iron deposits 2.2.2.9 Iron sands 2.2.2.10 Sulfur-rich sources of iron 2.2.2.11 Iron ore classification 2.3 Chemical composition 2.4 Physical properties 2.4.1 Relative hardness and lump/fine ore ratio 2.4.2 Lump material-handling properties 2.4.3 ROM properties for crushing 2.4.3.1 Uniaxial compressive strength 2.4.3.2 Impact crushability 2.4.4 Particle specific gravity 2.4.5 Material-handling properties 2.4.5.1 Abrasion properties 2.4.5.2 Frictional properties 2.4.5.3 Bulk density 2.4.6 Product particle size 2.4.7 Relationship between ore properties and process performance 2.4.7.1 Prediction of blast furnace lump quality 2.4.7.2 Lump DI and ore groups 2.5 Future trends References 3 - Quantitative XRD analysis and evaluation of iron ore, sinter, and pellets 3.1 Introduction 3.2 XRD mineral quantification 3.2.1 X-ray diffractometer 3.2.2 Principles of powder X-ray diffraction 3.2.3 Rietveld analysis of X-ray diffraction patterns 3.2.4 Sources of error in quantitative XRD analysis 3.2.5 Applicability of quantitative XRD analysis 3.3 Principal minerals of natural and sintered iron ores 3.4 Quantitative XRD analysis of iron ore 3.4.1 Quantification of iron ore minerals 3.4.2 Substitution assessment of impurity elements in hematite and goethite 3.5 Quantitative XRD analysis of iron ore sinter and pellets 3.5.1 Fundamental studies of sinter phases 3.5.2 In situ studies of sintering reactions 3.6 Summary References 4 - Automated optical image analysis of natural and sintered iron ore 4.1 Introduction—overview of optical image analysis technique 4.2 Mineralogical characteristics of iron ore and sinter 4.2.1 Iron ores 4.2.2 Sinter 4.3 Automated optical image analysis 4.3.1 Automated identification of particles and opaque minerals 4.3.2 Automated particle separation 4.3.3 Automated porosity identification 4.3.4 Automated identification of unidentified areas 4.3.5 Automated correction of mineral maps 4.3.6 Automated image processing 4.4 Application of automated OIA to natural and sintered iron ore References 5 - Quantitative analysis of iron ore using SEM-based technologies 5.1 Introduction 5.2 Principles of SEM-based technologies 5.2.1 Introduction to the principle of scanning electron microscopy 5.2.1.1 The average atomic number of a mineral or substance 5.2.1.2 Characteristic X-ray spectra of minerals 5.2.2 Sample preparation principles 5.2.3 Various SEM-based technologies 5.2.3.1 Electron back-scatter diffraction 5.2.3.2 Electron probe microanalysis 5.2.3.3 Automated mineralogical (auto-SEM) technologies 5.2.3.4 Auto-SEMs with specific regard to iron ore analysis 5.2.3.5 QEMSCAN 5.2.3.6 MLA 5.2.3.7 Mineralogic 5.2.3.8 TIMA 5.2.3.9 AMICS and INCAMineral 5.3 Application of automated SEM-based technologies to ore characterization 5.3.1 Textural analysis 5.3.2 Mineral abundance 5.3.3 Magnetite/hematite distinction 5.3.4 Lithotyping/microlithotyping 5.3.5 Grain size 5.3.6 Liberation, locking, and association 5.4 Characterization of natural and sintered iron ore using QEMSCAN 5.5 Summary 5.5.1 Advantages (strengths) 5.5.2 Disadvantages (weaknesses) 5.6 Future trends References 6 - Characterization of iron ore by visible and infrared reflectance and Raman spectroscopies 6.1 Introduction 6.2 Principles, instrumentations, and applications of reflectance spectroscopy 6.2.1 Reflectance spectroscopy 6.2.2 Reflectance spectroscopy instrumentations 6.2.2.1 Field spectroradiometer 6.2.2.2 Hyperspectral drill core and chips scanning system 6.2.2.3 Face mapping system 6.2.2.4 Remote sensing technology 6.2.3 Reflectance spectroscopy of iron ore minerals 6.2.3.1 Magnetite and maghemite 6.2.3.2 Goethite and hematite 6.2.3.3 Gangue minerals 6.2.3.3.1 Quartz 6.2.3.3.2 Clay minerals 6.2.3.3.3 Chlorite 6.2.3.3.4 Talc 6.2.3.3.5 Amphiboles 6.2.3.3.6 Carbonates 6.2.4 Application of reflectance spectroscopy to iron ore characterization 6.3 Principles, instrumentations, and applications of Raman spectroscopy 6.3.1 Raman spectroscopy 6.3.2 Raman spectroscopy instrumentations 6.3.2.1 Portable Raman spectroscope 6.3.2.2 Raman microscope 6.3.3 Raman spectroscopy of iron ore minerals 6.4 Future trends References Part Two - Extraction, comminution, classification, and beneficiation of iron ore 7 - Iron ore extraction techniques 7.1 Introduction 7.2 Iron ore mining—an historical UK context 7.2.1 Underground mining techniques in the Cleveland ironstone mines 7.2.2 Underground mining techniques in the North Lincolnshire mines 7.3 Underground iron ore mining: Kiruna, Sweden 7.3.1 Introduction: the worldwide iron ore market 7.3.2 Location and geology 7.3.3 Mining method: sublevel caving 7.3.4 The 1365 m level 7.4 Modern-day surface mining: the Pilbara deposit 7.5 Modern day surface mining: iron ore in Minas Gerais Province, Brazil 7.6 Conclusions References 8 - Comminution and classification technologies of iron ore 8.1 Introduction 8.2 Iron ore crushing and screening 8.2.1 Crushers 8.2.1.1 Jaw crushers 8.2.1.2 Gyratory and cone crushers 8.2.2 Screens 8.2.3 Typical crushing and screening flowsheets 8.2.3.1 Rio Tinto iron ore processing plants 8.2.3.2 BHP Newman iron ore handling hub 8.2.3.3 Roy Hill operation 8.2.3.4 Vale S11D project 8.2.3.5 Mobile crushing and screening plant applications for small to medium sized iron ore projects 8.3 Iron ore grinding and classification 8.3.1 Examples of iron ore grinding and classification flowsheets 8.3.2 Grinding equipment 8.3.2.1 Tumbling mills 8.3.2.1.1 Autogenous and semiautogenous mills 8.3.2.1.2 Ball mills 8.3.3 Classification equipment 8.3.3.1 Hydrocyclone separators 8.3.3.2 Air classifiers 8.4 Future trends in iron ore comminution and classification 8.4.1 Fine grinding technologies—stirred milling 8.4.1.1 Tower mill, Vertimill, and Velix vertical helix stirred mill 8.4.1.2 IsaMill 8.4.1.3 Outotec HIGmill 8.4.1 Fine screening technologies 8.4.2 High pressure grinding rolls 8.4.3 CAPEX and OPEX considerations References 9 - Physical separation of iron ore: magnetic separation 9.1 Introduction 9.2 Principle of magnetic separation 9.2.1 Magnetic force on particles 9.2.2 Magnetic susceptibilities of minerals in iron ore 9.2.2.1 Iron minerals 9.2.2.2 Gangue minerals in iron ores 9.3 Magnetic separators 9.3.1 Low-intensity magnetic separators 9.3.2 High intensity and high gradient magnetic separators 9.4 Typical flow sheets for upgrading low-grade iron ores 9.4.1 Major principles for selection of separation methods 9.4.2 Typical flow sheets for upgrading magnetite ores 9.4.3 Typical flow sheets for upgrading oxidized iron ores 9.5 Challenges and recent advances in upgrading low-grade iron ores using magnetic separation 9.5.1 Development of large magnetic separator units 9.5.2 Utilization of subeconomic iron ores and wastes 9.5.3 Development of dry magnetic separators 9.6 Summary References 10 - Non-magnetic physical separation of hematitic/goethitic iron ore 10.1 Physical processing for enhancing chemical properties 10.1.1 Scrubbing and washing 10.1.2 Hydrocycloning 10.2 Dense medium separation 10.2.1 Principle 10.2.2 DMS equipment 10.2.3 DMS in current iron ore utilization 10.2.3.1 Sishen DMS plant 10.2.3.2 Mount Tom Price DMS plant 10.2.4 DMS performance measurement 10.2.5 DMS compared to other gravitational separation processes 10.2.5.1 Particle size limit 10.2.6 Medium considerations 10.2.6.1 Ferrosilicon grades 10.2.6.2 Medium recovery 10.3 Jigging 10.3.1 Principle of jigging 10.3.2 Control of the jigging process 10.3.3 Developments 10.3.3.1 Product extraction 10.3.3.2 Ragging deck 10.3.3.3 Kelsey jig 10.3.4 Application of jigging 10.3.5 Jigging versus DMS 10.4 Upflow classification 10.4.1 Elutriation—the driving force of upflow classification 10.4.2 Developments in upflow classification 10.4.2.1 Multiple stage 10.4.3 Application of upflow classifiers 10.4.3.1 Use with WHIMS 10.4.4 Assessment of upflow classification 10.5 Spiraling 10.5.1 Historical gravity separation and the advent of the modern-day spiral 10.5.2 Principle of spiraling separation 10.5.3 Spiral design 10.5.4 Operating criteria 10.5.5 Testwork and assessment of spiral performance 10.5.6 Spiraling applications in iron ore processing 10.5.7 Spiraling—pros and cons 10.5.8 Recent advancements in spiral technology 10.5.9 Future directions 10.6 Dry physical separation technologies aimed at enhancing chemical properties References 11 - Physiochemical separation of iron ore 11.1 Introduction 11.2 Mineral properties 11.2.1 Mineralogy and occurrence 11.2.2 Liberation 11.2.3 Surface and electrokinetic properties 11.3 Iron ore flotation 11.3.1 Separation of silica from iron ore by flotation 11.3.2 Removal of impurities other than silica 11.3.2.1 Aluminum removal 11.3.2.2 Phosphorus removal 11.3.2.3 Sulfur removal 11.3.3 Flotation equipment 11.3.4 Commercial flotation schemes 11.4 Key challenges and future directions References 12 - Chemical separation of iron ore 12.1 Introduction 12.1.1 Phosphorus in iron ore 12.1.2 Phosphorus chemistry during ironmaking and steelmaking 12.1.3 Effect of phosphorus on the mechanical properties of steel 12.2 Phosphorus removal from iron ores 12.2.1 Removal from magnetite ores 12.2.2 Removal from oolitic hematite ores 12.2.3 Removal from oolitic limonite ores 12.2.4 Removal from goethite–hematite ores 12.3 Removal of silicon, aluminum, and sulfur minerals 12.4 Summary and future trends References 13 - Thermal beneficiation of refractory iron ore 13.1 Introduction 13.2 Magnetizing roasting and magnetic separation process 13.2.1 Fundamentals 13.2.1.1 Hematite and goethite 13.2.1.2 Siderite 13.2.1.3 Pyrite 13.2.1.4 Summary 13.2.2 Laboratory research 13.2.2.1 Hematite and goethite 13.2.2.1.1 Magnetizing roasting by using gaseous reducing agent 13.2.2.1.2 Magnetizing roasting by using solid reducing agents 13.2.2.2 Siderite 13.2.2.3 Other iron-bearing materials 13.2.3 Industrial applications 13.2.3.1 Shaft furnace roasting process 13.2.3.2 Rotary kiln roasting process 13.2.3.3 Fluidized bed roasting process 13.2.3.3.1 Multistage circulating fluidized bed magnetizing roasting process 13.2.3.3.2 Flash magnetizing roasting process 13.2.3.3.3 Suspension magnetizing roasting process 13.2.3.4 Summary 13.3 Deep reduction and magnetic separation process 13.3.1 Fundamentals 13.3.1.1 Reduction of iron-bearing minerals 13.3.1.2 Nucleation and growth of metallic iron particles 13.3.1.3 Liberation of metallic iron particles 13.3.2 Laboratory research 13.3.3 Future development 13.3.3.1 Rotary kiln process 13.3.3.2 Tunnel kiln process 13.3.3.3 Rotary hearth furnace process 13.3.3.4 Paired straight hearth furnace process 13.3.3.5 Flash ironmaking process 13.4 Summary References 14 - Application of biotechnology in iron ore beneficiation 14.1 Introduction 14.2 Microbial adhesion to mineral surfaces 14.2.1 Adhesion mechanisms 14.2.1.1 Microbe–mineral interactions depend on cell surface properties 14.2.1.2 Attachment, biofilm formation, and production of EPS and other metabolites 14.2.1.3 Analytical techniques to determine cell and mineral surface properties 14.2.2 Cell surface changes due to growth conditions 14.2.3 Mineral surface effects on microbial adhesion 14.2.4 Increasing mineral selectively by microbial adaptation 14.3 Bioleaching for phosphorus removal from iron ores 14.3.1 Phosphorus bioleaching fungi 14.3.2 Commercial bioleaching acidophilic bacteria 14.3.3 Soil bacteria 14.3.4 Combination phosphorus removal 14.4 Biobeneficiation of sulfide ores 14.4.1 Commercial bioleaching acidophilic bacteria 14.4.2 Soil bacteria 14.4.2.1 Paenibacillus polymyxa 14.4.2.2 Other soil bacteria 14.4.2.3 Halophilic bacteria 14.5 Biobeneficiation of iron ore 14.5.1 Commercial bioleaching acidophilic bacteria 14.5.2 Soil bacteria 14.5.2.1 Mycobacterium 14.5.2.2 Shewanella 14.5.2.3 Dissimilatory iron-reducing bacteria 14.5.2.4 Rhodococcus 14.5.2.5 Paenibacillus 14.5.2.6 Bacillus 14.5.3 Combining conventional and biobeneficiation for economic and environmental impact 14.6 Future trends Acknowledgments References Part Three - Iron ore agglomeration and ironmaking technologies 15 - Iron ore sintering 15.1 Introduction 15.1.1 Sintering process for iron ore fines 15.1.2 Application of iron ore sinter 15.2 Effect of iron ore characteristics on sintering 15.2.1 Influence of ore characteristics on granulation 15.2.1.1 Physical characteristics of iron ore 15.2.1.2 Mineralogical characteristics of iron ore 15.2.1.3 Chemical characteristics of iron ore 15.2.2 Effect of ore characteristics on thermal densification 15.2.2.1 Chemical characteristics of iron ore 15.2.2.2 Physical characteristics of iron ore 15.2.2.3 Mineralogical characteristics of iron ore 15.2.3 Summary 15.3 Evaluation of iron ore for the sintering process 15.3.1 Pilot-scale evaluation of iron ore—sinter pot tests 15.3.2 Laboratory-scale evaluation of iron ore 15.3.2.1 Fundamental granulation characteristics of iron ore 15.3.2.1.1 Water absorption capacity of iron ore 15.3.2.1.2 Intra- and interparticles water migration kinetics of iron ore 15.3.2.1.3 Cohesive strength of fine ore 15.3.2.2 Fundamental sintering characteristics of iron ore 15.3.2.2.1 Thermal cracks in coarse ore particles 15.3.2.2.2 Melt penetration of fine ore particles 15.3.2.2.3 Assimilation behavior of coarse ore particles 15.4 Recent developments in iron ore sintering 15.4.1 Background 15.4.2 Selective granulation to address rising ore alumina content 15.4.3 Limestone and coke breeze coating for better combustion and melting 15.4.4 Improved charging method for better permeability and segregation 15.4.5 HPS/MEBIOS processes to address increasing finer materials 15.4.5.1 HPS process 15.4.5.2 MEBIOS process 15.4.6 Microparticles as a new binder for intensifying granulation 15.4.6.1 Advanced granulation for innovation of sinter ore process 15.4.6.2 Semi-pellet expansion II process 15.4.6.3 Enhanced granulation with ground microparticles from iron ore in the absence of APD 15.4.7 Support stand for improved permeability in the lower part of the sinter bed 15.4.8 Super-SINTER for energy and CO2 reduction 15.4.9 Lime coating coke for reduction of NOx emission 15.5 Conclusions Acknowledgments References 16 - Iron ore pelletization 16.1 Introduction 16.2 Specification requirements of pellet feed 16.3 Green ball formation and properties 16.3.1 Green ball formation 16.3.2 Pretreatment of pellet feed 16.3.2.1 Damp milling 16.3.2.2 HPGR 16.3.2.3 Ball milling 16.3.3 Blending hematite and pyrite cinder with magnetite 16.3.4 New binders 16.3.4.1 Organic binders 16.3.4.2 Organic/bentonite composite binders 16.3.4.3 Substitution of hydrated lime for bentonite in fluxed pellets 16.4 Induration of green pellets 16.4.1 Typical microstructures and bonding mechanisms of fired pellets 16.4.2 Effect of blending magnetite concentrates and HPGR pretreatment 16.4.3 Boron containing additives 16.4.4 Optimizing MgO and basicity 16.5 Quality requirements for fired pellets 16.6 Conclusions References 17 - Blast furnace ironmaking and its ferrous burden quality requirements 17.1 Introduction to ironmaking technologies 17.2 Blast furnace ironmaking fundamentals—zones and reactions in the blast furnace 17.2.1 Raceway 17.2.2 Lumpy zone 17.2.3 Cohesive zone 17.2.4 Active coke zone 17.2.5 Hearth and stagnant coke zone 17.3 Quality requirements 17.4 Physical testing of blast furnace Fe-bearing materials 17.4.1 Standardized tests 17.4.1.1 Tumble and abrasion indices 17.4.1.2 Shatter index 17.4.1.3 Cold crushing strength 17.4.1.4 Decrepitation index 17.4.1.5 Low temperature reduction disintegration index 17.4.1.6 Reducibility index 17.4.1.7 Free swelling index 17.4.2 Nonstandardized tests 17.5 Summary References 18 - Alternative ironmaking processes and their ferrous burden quality requirements 18.1 Introduction 18.2 Direct reduction 18.2.1 Background 18.2.2 Key DR processes 18.2.2.1 MIDREX process 18.2.2.2 ENERGIRON process 18.2.3 Raw material quality requirements 18.2.4 Metallurgical testing of DR pellets and lump ore 18.2.4.1 Low temperature disintegration test 18.2.4.2 Hot load test 18.2.4.3 Reducibility test 18.2.4.4 Swelling test 18.3 Smelting reduction 18.3.1 Background 18.3.2 Key SR processes 18.3.2.1 COREX process 18.3.2.1.1 Process description 18.3.2.1.2 Raw material quality requirements 18.3.2.1.3 Metallurgical testing 18.3.2.1.3.1 COREX Linder test 18.3.2.1.3.2 Baosteel static load reduction test 18.3.2.2 Finex processs 18.3.2.2.1 Process description 18.3.2.2.2 Raw material quality requirements 18.3.2.3 HIsmelt process 18.3.2.3.1 Process description 18.3.2.3.2 Raw material quality requirements 18.4 Summary References Part Four - Environmental sustainability and low emission technologies 19 - Sintering emissions and mitigation technologies 19.1 Introduction 19.1.1 Key emissions from sinter plants 19.1.2 Secondary measures for sintering emission mitigation 19.2 COX emissions and their mitigation 19.2.1 Characteristics of COX emissions 19.2.2 Mitigation technologies for CO2 emissions 19.2.2.1 Deep bed sintering 19.2.2.2 Super SINTER 19.2.2.3 Improved charging segregation 19.2.2.4 Substitution of metallic iron bearing resources and waste fuels for coke breeze 19.2.2.5 Other CO2 mitigation measures 19.2.2.5.1 Sinter plant heat recovery 19.2.2.5.2 Improved efficiency of ignition furnace 19.2.2.5.3 Reduction of air leakage 19.3 SOX emissions and their mitigation 19.3.1 Formation mechanisms and characteristics of SOX emissions 19.3.2 Mitigation of SOX emissions 19.4 NOX emissions and their mitigation 19.4.1 Formation mechanisms and characteristics of NOX emissions 19.4.2 Mitigation of NOX emissions 19.5 Dioxin emissions and their mitigation 19.5.1 Background 19.5.2 De novo formation mechanism and characteristics of dioxins 19.5.3 Mitigation of dioxin emissions 19.5.3.1 Process variables 19.5.3.2 Raw materials 19.5.3.3 Additives 19.6 Dust emissions and their reduction 19.6.1 Background 19.6.2 Characteristics of dust and PM emissions 19.6.3 Factors influencing dust and PM emissions from iron ore sintering 19.7 Utilization of biomass materials in iron ore sintering 19.7.1 Background 19.7.2 Effect of substitution of biomass on COX emissions 19.7.3 Effect of substitution of biomass on toxic emissions 19.7.4 Effect of substitution of biomass on sintering performance 19.7.5 Challenges in utilization of biomass in sintering 19.8 Conclusions References 20 - Utilization of biomass as an alternative fuel in iron and steel making 20.1 Introduction 20.2 Potentials of biomass utilization in iron and steel industry 20.2.1 Biomass in blast furnace top charged burden 20.2.1.1 Bio-coke 20.2.1.2 Bio-sinter 20.2.1.3 Bio-briquettes 20.2.2 Biomass injection into blast furnace 20.2.3 Potentials of biomass in ironmaking 20.3 Biomass in steelmaking 20.4 Conclusions Acknowledgment References 21 - Life cycle assessment of iron ore mining and processing 21.1 Introduction 21.1.1 Principles of LCA 21.1.2 Current status of LCA application in mining and mineral processing 21.2 Iron ore mining and processing 21.2.1 Drilling 21.2.2 Blasting 21.3 Loading and haulage 21.3.1 Crushing 21.3.2 Screening and separations 21.3.3 Stacking and stockpiling 21.3.4 Reclaiming and loading on container/vessel 21.3.5 Transport 21.3.6 Auxiliary equipment 21.4 Application of LCA to iron ore mining and processing 21.4.1 Goal and scope 21.4.2 Inventory data 21.4.3 Calculation procedure 21.4.4 Impact assessment of iron ore mining and processing stages 21.4.5 Scenario assessment 21.5 Using LCA to reduce energy and greenhouse gas impacts 21.6 Conclusions 21.7 Sources of further information and advice References 22 - Iron ore in Australia and the world: Resources, production, sustainability, and future prospects 22.1 Introduction 22.2 Perspectives on global and Australian iron ore resources 22.2.1 Classifying and reporting resources 22.2.2 Australia’s global position 22.2.3 Australia’s known iron ore mines and mineral deposits 22.2.3.1 Reporting by company and deposit 22.2.3.2 Reporting by deposit type 22.2.4 Declining ore grades 22.3 Trends in iron ore and steel production 22.3.1 Historical perspective 22.3.2 Australia’s potential to meet future demand 22.4 Environmental and socioeconomic benefits, threats, and opportunities 22.4.1 Australia’s iron ore industry and environmental sustainability 22.5 Future technological drivers and their implication to world iron ore trade 22.5.1 Impurity-rich iron ore––beneficiation options 22.5.1.1 Evaluation of iron ore beneficiation technology 22.6 Iron ore and steel substance flows and sustainability issues 22.7 Conclusions Acknowledgment References 23 - Low carbon ironmaking technologies: Japan’s approach 23.1 Introduction 23.2 Cokemaking 23.2.1 Cokemaking process 23.2.2 Coal pretreatment technologies 23.2.2.1 CMC (Coal moisture control) 23.2.2.2 DAPS (dry-cleaned and agglomerated precompaction system) 23.2.2.3 SCOPE21 (super coke oven for productivity and environment enhancement toward 21st century) project 23.2.3 Waste plastic recycling in coke oven 23.2.4 Coke dry quenching 23.3 Blast furnace 23.3.1 Improvement of heat balance 23.3.2 Improvement of shaft efficiency 23.3.3 Control of W-point (wustite-iron equilibrium) 23.3.3.1 Reactive coke agglomerate 23.3.3.2 Ferro-coke 23.3.3.3 Highly reactive coke 23.3.4 Stable BF operation 23.3.5 Hydrogen reduction 23.3.5.1 Natural gas injection 23.3.5.2 COURSE50 project 23.3.6 Waste plastic injection 23.4 Conclusions References 24 - Low carbon ironmaking technologies: an European approach 24.1 Introduction 24.2 Blast furnace ironmaking 24.2.1 Blast furnace design and principles of operation 24.2.1.1 Blast furnace profile 24.2.1.2 Principles of blast furnace operation 24.2.2 Streaming conditions and heat exchange 24.2.2.1 Motion of materials and gases 24.2.2.2 Heat exchange 24.2.3 Reduction processes 24.2.3.1 Reduction of iron oxides 24.2.3.2 Reduction of accompanying elements 24.2.4 Oxidation processes 24.2.5 Formation of metal and slag 24.3 Alternative ironmaking technologies 24.3.1 Principles and classification of direct and smelting reduction processes 24.3.2 Raw materials and products 24.3.3 Selected direct reduction processes 24.3.4 Selected smelting reduction processes 24.4 Towards carbon-free ironmaking 24.4.1 Environmental challenges and EU frame conditions 24.4.2 Ways to low carbon and carbon-free iron and steel production 24.4.3 Reserves and options for the blast furnace and related processes 24.4.4 Innovations and trends in DR developments 24.4.5 Innovations and trends in SR developments 24.4.6 Further European projects on carbon-free steel production 24.4.7 Hydrogen challenges and final remarks References Index Back cover