دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Keith Gremban, Ananthram Swami, Robert Douglass, Stephan Gerali سری: ISBN (شابک) : 1119892147, 9781119892144 ناشر: Wiley-IEEE Press سال نشر: 2023 تعداد صفحات: 515 [516] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 Mb
در صورت تبدیل فایل کتاب IoT for Defense and National Security به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اینترنت اشیا برای دفاع و امنیت ملی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
راهنمای عملی مبتنی بر مورد که چالشها و راهحلهای اتخاذ اینترنت اشیا در هر دو محیط امن و متخاصم را نشان میدهد
< span>IoT for Defense and National Security موضوعاتی را در مورد امنیت اینترنت اشیا، معماری، روباتیک، سنجش، سیاست، عملیات و موارد دیگر، از جمله آخرین نتایج حاصل از ابتکار تحقیقاتی برتر IoT وزارت دفاع ایالات متحده، پوشش می دهد. اینترنت چیزهای نبرد این متن همچنین چالشهای تبدیل عملیات صنعتی دفاعی به اینترنت اشیا را مورد بحث قرار میدهد و توصیههای سیاستی برای تنظیم استفاده دولت از اینترنت اشیا در جوامع آزاد را خلاصه میکند.
به عنوان یک مرجع مدرن، این کتاب چندین فناوری را در اینترنت اشیاء شامل اینترنت اشیای تاکتیکی قابل بقا با استفاده از مسیریابی مبتنی بر محتوا، شبکههای ad-hoc موبایل و پرتوهای الکترونیکی پوشش میدهد. نمونه هایی از معماری اینترنت اشیا شامل استفاده از KepServerEX برای اتصال لبه و AWS IoT Core و Amazon S3 برای داده های اینترنت اشیا است. برای کمک به درک خواننده، متن از مطالعات موردی استفاده میکند که چالشها و راهحلهای استفاده از دستگاههای رباتیک در کاربردهای دفاعی را نشان میدهد، بهعلاوه مطالعات موردی در مورد استفاده از اینترنت اشیا برای یک پایگاه صنعتی دفاعی.
نوشته شده توسط محققان و دست اندرکاران برجسته فناوری IoT برای دفاع و امنیت ملی، IoT برای دفاع و امنیت ملی همچنین شامل اطلاعاتی در مورد:
< span>برای مهندسان برنامه های کاربردی از شرکت های مرتبط با دفاع و همچنین مدیران، سیاست گذاران و دانشگاهیان، IoT برای دفاع و امنیت ملی در نوع خود بی نظیر است. منبع، ارائه پوشش گسترده ای از یک موضوع مهم و در عین حال حساس که اغلب به دلیل توزیع های طبقه بندی شده یا محدود از عموم محافظت می شود.
Practical case-based guide illustrating the challenges and solutions of adopting IoT in both secure and hostile environments
IoT for Defense and National Security covers topics on IoT security, architecture, robotics, sensing, policy, operations, and more, including the latest results from the premier IoT research initiative of the U.S. Defense Department, the Internet of Battle Things. The text also discusses challenges in converting defense industrial operations to IoT and summarizes policy recommendations for regulating government use of IoT in free societies.
As a modern reference, this book covers multiple technologies in IoT including survivable tactical IoT using content-based routing, mobile ad-hoc networks, and electronically formed beams. Examples of IoT architectures include using KepServerEX for edge connectivity and AWS IoT Core and Amazon S3 for IoT data. To aid in reader comprehension, the text uses case studies illustrating the challenges and solutions for using robotic devices in defense applications, plus case studies on using IoT for a defense industrial base.
Written by leading researchers and practitioners of IoT technology for defense and national security, IoT for Defense and National Security also includes information on:
For application engineers from defense-related companies as well as managers, policy makers, and academics, IoT for Defense and National Security is a one-of-a-kind resource, providing expansive coverage of an important yet sensitive topic that is often shielded from the public due to classified or restricted distributions.
Cover Title Page Copyright Contents List of Contributors Introduction: IoT for Defense and National Security Part 1 Introduction: Vision, Applications, and Opportunities Chapter 1 Internet of Battlefield Things: Challenges, Opportunities, and Emerging Directions 1.1 IoBT Vision 1.2 IoBT vs. IoT 1.3 IoBT Operational Requirements 1.4 An Organizing Concept 1.4.1 The MDO Effect Loop 1.4.2 Technical Challenges 1.4.2.1 Compositionality and Synthesis 1.4.2.2 Timeliness and Efficiency 1.4.2.3 Robustness to Adversarial Disruption 1.4.2.4 Deployability at the Point of Need 1.5 Performant and Resilient IoBTs 1.5.1 Compositionality and Synthesis 1.5.2 Timeliness and Efficiency 1.5.3 Robustness to Adversarial Disruption 1.5.4 Deployability at the Point of Need 1.6 Future Directions 1.6.1 Multi‐tenancy and Multiplicity of Use 1.6.2 Multiplicity of Function 1.6.3 Non‐stationarity and Multiplicity of Perturbations 1.6.4 Multiplicity of Sensing Modalities 1.6.5 Multiplicity of Time‐scales 1.6.6 Architecture 1.7 Conclusion References Chapter 2 Sensorized Warfighter Weapon Platforms: IoT Making the Fog of War Obsolete 2.1 Introduction 2.2 IoT for Firearms 2.3 New Insights into the Battlefield Provided by IoT 2.4 Challenges for IoT in Soldier Weapons 2.5 Battlefield Challenges to Aggregating and Exfiltrating Data 2.6 Protection and Security for IoT Data Communication 2.7 State of the Art 2.8 Conclusion References Chapter 3 IoBT Resource Allocation via Mixed Discrete and Continuous Optimization 3.1 Introduction 3.2 Lattices and Submodular Functions 3.3 Problem Formulation 3.4 An Equivalent Parameterization 3.5 Returning to Constraints 3.5.1 Knapsack Constraints 3.5.2 Continuous Budget Constraints 3.6 Computational Examples 3.6.1 Unconstrained Optimization 3.6.2 Knapsack‐Constrained Allocations 3.6.3 Continuous Budget‐constrained Allocations 3.7 Conclusions References Chapter 4 Operationalizing IoT Data for Defense and National Security 4.1 Introduction 4.2 Problem Statement 4.3 Challenges 4.4 Security Considerations 4.5 Developing a Strategy for Operationalizing Data 4.6 Precedence 4.7 End State 4.8 Conclusion References Chapter 5 Real Time Monitoring of Industrial Machines using AWS IoT 5.1 Problem Statement 5.2 Solution Statement – Overview 5.3 Solution Statement – Edge Computing 5.4 Solution Statement – Cloud Connectivity 5.5 Solution Statement – Streaming Analytics and Data Storage 5.6 Solution Statement – Data Visualization 5.7 Solution Statement – Example Data Visualizations 5.8 Results 5.9 Next Steps References Chapter 6 Challenges and Opportunities of IoT for Defense and National Security Logistics 6.1 Introduction 6.2 Linking Industry and DoD Uses of IoT 6.3 Situational Awareness 6.3.1 Policy and Legal Implications 6.3.2 Challenges and Considerations 6.4 Applications for DoD 6.4.1 Situational Awareness of People and Equipment for Maintainability and Sustainability 6.4.2 Data Collection for Real‐time and Predictive CBM 6.4.3 Prepositioning and Planning for People and Supplies (Prepo‐in‐motion) 6.4.4 IoT at DoD Installations 6.4.4.1 Energy Management 6.4.4.2 Installations as Training Platforms 6.4.5 IoT and Emergency Response 6.4.6 IoT and Disaster Response 6.5 Observations on the Future Acknowledgement References Chapter 7 Digital Twins for Warship Systems: Technologies, Applications and Challenges 7.1 Introduction 7.2 A Digital Twin Architecture for Implementation 7.2.1 Physical Level 7.2.2 Physical World/Virtual World Interface 7.2.3 Digital Twin 7.2.3.1 Integration of Functionalities: User Interfaces 7.2.3.2 Simulation Models 7.2.3.3 Data Storage and Data Lakes 7.2.3.4 Data Analysis, Machine Learning, and Predictive Algorithms 7.3 Ship Digital Twin Implementation 7.3.1 Physical Level 7.3.2 Physical World/Virtual World Interface 7.3.3 Integration of Functionalities and the User Interface 7.3.4 Simulation Models 7.3.5 Data Analysis, Machine Learning, and Predictive Algorithms References Part 2 Introduction: Artificial Intelligence and IoT for Defense and National Security Chapter 8 Principles of Robust Learning and Inference for IoBTs 8.1 Internet of Battlefield Things and Intelligence 8.2 Dimensions of Responsible AI 8.2.1 Research Challenges in IoBTs 8.2.2 Trust, Resilience and Interpretability 8.3 Detecting Surprise: Adversarial Defense and Outlier Detection 8.4 Novel Deep Learning Representation: Dynamical System 8.5 Robust Secure State Estimation 8.6 Distributionally Robust Learning 8.7 Future Directions 8.8 Conclusion References Chapter 9 AI at the Edge: Challenges, Applications, and Directions 9.1 Introduction 9.2 IoT Applications 9.2.1 Visual Inspection of Assets 9.2.1.1 Visual Recognition 9.2.1.2 AI Optimization 9.2.1.3 Fixed IoT Sensors vs. RIDs 9.2.2 Thermal Inspection of Assets 9.2.2.1 Inspection at Electric Substations 9.2.2.2 Proposed Automation 9.2.3 Inspection of Analog Meters and Gauges 9.2.3.1 Gauge Detection 9.2.3.2 Perspective Correction 9.2.3.3 Pointer Detection and Text Recognition 9.2.4 Other Defense and Commercial Use Cases 9.3 Distributed AI Architecture 9.3.1 Background: Centralized AI and Edge AI 9.3.1.1 Centralized AI 9.3.1.2 Edge AI 9.3.2 Open Challenges in Edge AI 9.3.3 New Paradigm: Distributed AI 9.4 Technology 9.4.1 Data Ops 9.4.1.1 Statistical Summaries 9.4.1.2 Dimensionality Reduction 9.4.1.3 Sampling from Original Space 9.4.2 Model Ops 9.4.2.1 OOD Detection Algorithm 9.4.2.2 Experiments 9.4.3 Optimization and Adaptation 9.4.3.1 Model Pruning 9.4.3.2 Model Quantization 9.4.3.3 Other Schemes 9.4.3.4 Experiments: Model Optimization for Asset Inspection 9.4.4 Federated Learning 9.4.4.1 Resource Efficiency of FL 9.4.4.2 Privacy Considerations 9.5 Research Directions 9.5.1 Learning with Resource Optimization 9.5.2 Collaboration Among Humans and Robots 9.5.3 Multi‐modal Learning 9.5.3.1 Context‐based Multi‐modal Sensing 9.5.3.2 Adaptive Navigation to Optimize Sensing 9.6 Conclusions References Chapter 10 AI Enabled Processing of Environmental Sounds in Commercial and Defense Environments 10.1 Introduction 10.1.1 Challenges 10.1.2 System Overview 10.1.3 IoT Acoustics vs. Speech Recognition 10.2 Use Cases 10.2.1 Defense Use Cases 10.2.1.1 Perimeter Defense 10.2.1.2 Vehicle Classification 10.2.1.3 Activation of Other Modalities 10.2.1.4 Fleet and Facilities Maintenance 10.2.2 Commercial Use Cases 10.2.2.1 Manufacturing 10.2.2.2 Vehicle Monitoring 10.2.2.3 Animal Husbandry 10.2.2.4 Healthcare 10.2.2.5 Security 10.3 System Architecture 10.4 Technology 10.4.1 Data Management and Curation 10.4.2 Model Training Pipeline 10.4.3 Models 10.4.3.1 Shallow Models 10.4.3.2 Deep Models 10.4.3.3 Inference Performance on the Edge 10.4.4 Anomaly Detection 10.4.5 Model Drift 10.4.6 Model Update/Evolution 10.4.7 Model Adaptation 10.5 Summary References Part 3 Introduction: Security, Resiliency, and Technology for Adversarial Environments Chapter 11 Assurance by Design for Cyber‐physical Data‐driven Systems 11.1 Introduction 11.1.1 Formal Methods for Software Intensive Systems 11.1.2 Adapting Formal Methods for Data Driven Systems 11.2 Methods for Assurance 11.2.1 Tools for Information Freshness 11.2.2 Methods for Decision Assurance 11.2.2.1 Scenario Generation for CPDDSs 11.2.2.2 Consequence Assessment for CPDDSs 11.2.3 Assurance of Interconnected Networked CPDDSs 11.2.3.1 Network Representation 11.2.3.2 Dynamic Cascade Modeling 11.2.3.3 Multi‐Agent Decision Optimization 11.3 Discussion and Conclusion References Chapter 12 Vulnerabilities in IoT Systems 12.1 Introduction 12.1.1 IoT System Components 12.1.2 Vulnerabilities and Threats 12.1.2.1 Devices 12.1.2.2 Communication Protocols 12.1.2.3 IoT Applications 12.1.2.4 Physical Medium 12.1.2.5 Mobile Apps 12.2 Firmware 12.2.1 Unprotected Network Services 12.2.2 Unprotected Firmware Updating 12.2.3 Buffer Overflow 12.3 Communication Protocols 12.3.1 Wi‐Fi 12.3.2 Zigbee 12.3.3 Z‐Wave 12.3.4 Bluetooth 12.3.5 Physical Layer 12.3.5.1 Jamming Attack 12.3.5.2 Side Channel Attack 12.3.6 TCP/IP Suite & Application Layer 12.4 IoT Apps 12.4.1 Checking Safety and Security Properties 12.4.2 Dynamic Security Policy Enforcement 12.4.3 IoT App Sniffing 12.5 Physical Dependencies 12.6 Companion Mobile Apps 12.7 Hardware 12.8 IoT Platforms 12.8.1 Over‐privileging 12.8.2 Data Leakage 12.9 Countermeasures 12.10 Conclusions References Chapter 13 Intrusion Detection Systems for IoT 13.1 Introduction 13.2 Background 13.2.1 Intrusion Detection Systems 13.2.1.1 Placement of Collectors 13.2.1.2 Architecture of Analyzers 13.2.1.3 Detection Mechanisms 13.2.2 Characteristics of IoT Environments 13.2.2.1 Simple Networking Patterns 13.2.2.2 Diverse Network Protocols 13.2.2.3 Small Number of Threads 13.2.2.4 Various Types of CPU Architectures and Operating Systems 13.2.2.5 Resource Constraints 13.2.2.6 Large Numbers of Devices 13.2.2.7 Dynamics and Autonomy 13.2.3 IoT‐Specific Protocols 13.2.3.1 IoT Network‐layer Protocols 13.2.3.2 IoT Application‐layer Protocols 13.2.4 IDS in IoT Environment 13.2.4.1 Relevance of IDS in IoT Environment 13.2.4.2 Challenges for IDSes in IoT Dynamic and Autonomous Environment 13.3 IoT Attack Scenarios 13.3.1 Attacks from the Internet 13.3.1.1 Port Scanning 13.3.1.2 Telnet/SSH/HTTP Bruteforce 13.3.1.3 SYN/ACK/UDP/HTTP Flooding 13.3.2 IoT‐specific Network‐layer Attacks 13.3.2.1 Hello Flood Attack 13.3.2.2 Neighbor Attack 13.3.2.3 DIS Attack 13.3.2.4 Sinkhole Attack 13.3.2.5 Wormhole Attack 13.3.2.6 Grayhole (or Selective Forwarding) Attack 13.3.3 IoT‐specific Application‐layer Attacks 13.3.3.1 CONNECT/CONNACK Flooding 13.3.3.2 CoAP Request/ACK Flooding 13.4 Proposed IDSes for IoT 13.4.1 Definition of Normal/Abnormal Behavior 13.4.1.1 Legitimate IP Addresses 13.4.1.2 Threshold 13.4.1.3 Automata 13.4.1.4 Federated Learning 13.4.2 Enhancements of ML‐based Detectors 13.4.2.1 Compression Header Analyzer Intrusion Detection System (CHA‐IDS) 13.4.2.2 E‐Spion 13.4.2.3 Deep learning-based IDS (DL‐IDS) 13.4.2.4 Multiclass Classification Procedure 13.4.2.5 Discussion 13.4.3 Lightweight Detector Implementation 13.4.3.1 Raspberry Pi IDS (RPiDS) 13.4.3.2 Passban IDS 13.4.3.3 Discussion 13.4.4 Combination of Diverse Detectors 13.4.4.1 IDS with Game‐theoretic Methodology 13.4.4.2 Hybrid Intrusion Detection and Prevention System (IDPS) 13.4.4.3 IDPS 13.4.4.4 Discussion 13.4.5 Optimal Detector Selection 13.4.5.1 Kalis 13.4.5.2 Reinforcement learning-based IDS (RL‐IDS) 13.4.5.3 Discussion 13.5 Research Directions Acknowledgement References Chapter 14 Bringing Intelligence at the Network Data Plane for Internet of Things Security 14.1 Introduction 14.2 Related Work 14.3 System Design 14.3.1 Architecture of the FRG Approach 14.3.2 Architecture of the BNN Approach 14.4 Problem Modeling 14.4.1 Classification with Header Bytes 14.4.2 Classification with Header Fields 14.5 Algorithms and Learning Models 14.5.1 FRG Approach: Overview 14.5.2 FRG Stage 1: Neural Network Structure 14.5.3 FRG Stage 2: Header Field Definition 14.5.4 BNN Approach 14.6 Evaluation Results 14.6.1 Performance of FRG Approach: Setup and Metrics 14.6.2 Performance of FRG Stage 1 (Classification) 14.6.3 Performance of FRG Stage 2 (Header Field Definition) 14.6.3.1 Profiles of Importance Scores 14.6.3.2 Impact of Header Fields on Accuracy 14.6.3.3 Impact of Header Fields on Costs 14.6.3.4 Optimal Selection of Header Fields 14.6.4 Performance of BNN Approach 14.6.4.1 Main Takeaways 14.7 Conclusions and Future Challenges Acknowledgment References Chapter 15 Distributed Computing for Internet of Things Under Adversarial Environments 15.1 Introduction 15.2 Distributed Computing for IoT in Defense Applications 15.2.1 Overview of Requirements/Challenges 15.2.2 Characteristics of Distributed IoBT Applications 15.3 Threat Model 15.3.1 System Description 15.3.2 Threats 15.3.2.1 Goals of an Adversary 15.3.2.2 Attack Vectors 15.4 Frameworks for Distributed Computing 15.4.1 Resource and Task Management in Distributed Computing 15.4.2 Gathering Resources in Adversarial Environments 15.5 Establishing Trust in Adversarial Environments: Solutions and Open Opportunities 15.5.1 Verifiable Computation 15.5.1.1 Homomorphic Encryption 15.5.1.2 Proof‐based Verification 15.5.1.3 TrueBit 15.5.1.4 Perlin 15.5.1.5 Open Opportunities 15.5.2 Byzantine Fault‐tolerant Distributed Computing 15.5.2.1 Open Opportunities 15.5.3 Grey Resource Accumulation 15.5.3.1 Open Opportunities 15.5.4 Cryptographic Approaches 15.5.4.1 Open Opportunities 15.5.5 Secure Computation with Trusted Execution Environments 15.5.5.1 Open Opportunities 15.6 Summary Acknowledgment References Chapter 16 Ensuring the Security of Defense IoT Through Automatic Code Generation 16.1 The Challenge of IoT in Defense and National Security Applications: The Challenge 16.2 Solutions 16.2.1 Control the Interfaces Between IoT Elements 16.2.2 Problems with Traditional Approaches to Malware Protection 16.2.3 Traditional Approaches to Security: Hardware 16.2.4 Traditional Approaches to Security: Simulation 16.2.5 Traditional Approaches to Security: Software 16.2.5.1 Coding Weaknesses, Software Vulnerabilities and Malware 16.2.5.2 Traditional Approaches for Protecting IoT Software 16.2.5.3 Improvements on Traditional Software Approaches 16.2.6 Auto‐code Generation for Vulnerability‐free IoT 16.2.6.1 Applying Auto‐code Generation Selectively for IoT Network Security 16.2.6.2 A Practical Approach to Generating Vulnerability‐free IoT Networks 16.3 Automatic Code Generation 16.3.1 Core Auto‐generation Engine 16.3.2 Semantic Definitions of Software Functions 16.3.3 Formal Methods for Verifying Semantic Definitions 16.3.3.1 Static Analysis for Verifying Code Generator Produces Vulnerability‐free Code 16.3.4 An Extended Example: Automatic Generation of Router Software 16.4 IoT Interface‐code Issuing Authority 16.4.1 Role of IoT Interface‐code Authority (IICA) 16.4.2 Precedents and Examples and a Proposed IoT Interface Code Authority 16.5 Conclusions References Part 4 Introduction: Communications and Networking Chapter 17 Leveraging Commercial Communications for Defense IoT 17.1 Introduction 17.2 Key Differences Between Defense and Commercial Communications Requirements 17.2.1 Interoperability 17.2.2 Mobility 17.2.3 Security 17.2.4 Vulnerability 17.3 Key Differences Between Defense and Commercial Technology Development 17.4 Commercial Communications for Use in Defense and Homeland Security 17.5 Conclusion References Chapter 18 Military IoT: Tactical Edge Clouds for Content Sharing Across Heterogeneous Networks 18.1 Introduction 18.2 The Need for Tactical Edge Clouds 18.3 Two Architectures 18.3.1 Architecture Paradigm 1: DARPA CBMEN 18.3.2 Architecture Paradigm 2: DARPA DyNAMO 18.4 Tactical Edge Cloud Architectural Insights 18.4.1 Information Generation and Discovery 18.4.2 Information Availability 18.4.3 Controlling Access 18.4.4 Information Quality of Service 18.4.5 Information Importance 18.5 Summary Acknowledgment References Chapter 19 Spectrum Challenges in the Internet of Things: State of the Art and Next Steps 19.1 Introduction 19.2 Spectrum Bands of Interest in the Internet of Things 19.2.1 Low‐bands and Mid‐bands 19.2.1.1 Millimeter‐Wave Bands 19.2.1.2 Visible Light and Communications Above 100 GHz 19.3 Spectrum Management in the Internet of Things: Requirements and Existing Work 19.4 Spectrum Management in the Internet of Things: The Way Ahead 19.4.1 Protecting Passive and Incumbent Users from IoT Interference in Shared Bands 19.4.2 Experimental Spectrum Sharing at Scale Through the Colosseum and NSF PAWR Testbeds 19.4.3 Robust Machine Learning for Effective, Reliable and Efficient Spectrum Management 19.4.4 The Role of O‐RAN in Spectrum Sharing 19.5 Conclusions References Chapter 20 Tactical Edge IoT in Defense and National Security 20.1 Introduction 20.2 Background 20.2.1 Tactical Edge IoT drivers 20.2.2 Defense and Public Safety 20.3 Compelling COTS Edge IoT Applications 20.4 Target Scenarios for Tactical Edge IoT 20.4.1 C4ISR 20.4.2 Firepower Control Systems 20.4.3 Logistics 20.4.3.1 Fleet Management 20.4.3.2 Individual Supplies 20.4.4 Smart City Operations 20.4.5 Soldier Healthcare and Workforce Training 20.4.6 Collaborative and Crowd Sensing 20.4.7 Energy Management 20.4.8 Smart Surveillance 20.5 Communications Architecture 20.6 Main Challenges and Recommendations 20.7 Conclusions Acknowledgments References Chapter 21 Use and Abuse of IoT: Challenges and Recommendations 21.1 The Elements of IoT and Their Nature 21.1.1 Use and Abuse of IoT 21.1.1.1 What Makes IoT So Powerful? 21.1.1.2 Orwell's Vision Has Not Yet Fully Materialized 21.1.1.3 IoT Unites Sensing/Information‐Extraction with Intelligent Processing and Action 21.1.2 Pervasive Sensing and Information Extraction 21.1.2.1 Sensors and Sensor Networks 21.1.2.2 Information Extraction 21.1.3 Intelligent Processing 21.1.3.1 IoT and the Nature of Intelligent Processing (AI) 21.1.3.2 Intelligent Processing of IoT Sensor Data and Extracted Information 21.1.3.3 Abuses of IoT Arising from Problems with Intelligent Processing 21.1.4 Control of Actions by IoT Devices 21.1.4.1 Control of Action 21.1.4.2 Abuse of Action by IoT 21.2 Preventing the Abuse of IoT While Enabling Its Benefits 21.2.1 A General Framework 21.2.1.1 The Need and Basis for an IoT Framework to Protect Human Rights 21.2.1.2 Consent by the Public and the Governed 21.2.1.3 Transparency: The Foundation of Consent 21.2.1.4 Accountability and Consequences 21.2.1.5 Security and Integrity 21.3 Types of Abuse and Misuse, and Prevention Through Regulation 21.3.1 Types of Abuse of IoT 21.3.1.1 Type 1 Abuse: Illegal or Unethical Abuse by Individuals or Organizations 21.3.1.2 Type 2 Abuse: Legal Abuse of IoT Without Consent or Benefit to Users or Owners 21.3.1.3 Type 3 Abuse: Government Abuse While Using IoT for Public Defense, Health, Safety, and Wellbeing 21.3.1.4 Type 4 Abuse: Government Use of IoT to Enhance Its Own Power and Enrich Officials 21.3.2 Regulating IoT to Prevent Abuse While Advancing Its Benefits 21.3.2.1 The Right to Limit and Regulate IoT 21.3.2.2 Regulating IoT: A Summary 21.4 Concluding Remarks: A Call to Action References Index EULA