دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: O. V. Gnana Swathika, K. Karthikeyan, Sanjeevikumar Padmanaban سری: ISBN (شابک) : 9781032362816, 9781003331117 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: 334 [335] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 21 Mb
در صورت تبدیل فایل کتاب IoT and Analytics in Renewable Energy Systems, Volume I: Sustainable Smart Grids & Renewable Energy Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اینترنت اشیا و تجزیه و تحلیل در سیستمهای انرژی تجدیدپذیر، جلد اول: شبکههای هوشمند پایدار و سیستمهای انرژی تجدیدپذیر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فنآوریهای شبکه هوشمند شامل فناوریهای سنجش و اندازهگیری، اجزای پیشرفته با کمک ارتباطات و روشهای کنترل همراه با رابطهای بهبود یافته و سیستمهای پشتیبانی تصمیم میشوند. تکنیکهای شبکه هوشمند از گنجاندن گسترده تولید انرژیهای تجدیدپذیر پاک در سیستمهای قدرت پشتیبانی میکنند. استفاده از شبکه هوشمند همچنین باعث صرفه جویی در مصرف انرژی در سیستم های قدرت می شود. اهداف امنیت سایبری برای شبکه هوشمند در دسترس بودن، یکپارچگی و محرمانه بودن است. پنج ویژگی برجسته این کتاب به شرح زیر است: هوش مصنوعی و اینترنت اشیا در بهبود انعطاف پذیری زیرساخت های انرژی هوشمند اینترنت اشیا، شبکه های هوشمند و انرژی های تجدیدپذیر: رویکرد اقتصادی هوش مصنوعی و ML به سمت انرژی خورشیدی پایدار وسایل نقلیه الکتریکی و شبکه هوشمند نظارت بر وضعیت هوشمند برای خورشید و باد سیستم های انرژی
Smart grid technologies include sensing and measurement technologies, advanced components aided with communications and control methods along with improved interfaces and decision support systems. Smart grid techniques support the extensive inclusion of clean renewable generation in power systems. Smart grid use also promotes energy saving in power systems. Cyber security objectives for the smart grid are availability, integrity and confidentiality. Five salient features of this book are as follows: AI and IoT in improving resilience of smart energy infrastructure IoT, smart grids and renewable energy: an economic approach AI and ML towards sustainable solar energy Electrical vehicles and smart grid Intelligent condition monitoring for solar and wind energy systems
Cover Half Title Title Page Copyright Page Table of Contents Editors Contributors Chapter 1 Policies for a Sustainable Energy-Dependent India 1.1 Introduction 1.2 The Need for Policies on Alternate Sources of Energy to Power India's Economy 1.3 Conclusion Bibliography Chapter 2 A Review on Internet of Things with Smart Grid Technology 2.1 Introduction: General 2.2 IoT-Enabled Smart Grid with Energy Efficiency in Various Aspects 2.2.1 Radio Networking 2.2.2 Cyberattacks 2.2.3 Energy-Efficient Management 2.2.4 Edge and Fog Computing 2.2.5 Applications, Fault Analysis, and Distributions 2.2.6 Blockchain-Based IoT 2.3 Real-Time Applications of IoT-Enabled Smart Grid 2.3.1 IoT-Based Smart Applications 2.4 IoT-Based Smart Grid Architecture 2.5 Detection for IoT-Enabled Smart Grid System 2.6 Recent Advancements in IoT-Smart Grid Technology 2.7 Conclusion References Chapter 3 Securing Smart Power Grids Against Cyber-Attacks 3.1 Introduction 3.1.1 History of Smart Electricity Networks 3.1.2 Comparison of Current Electricity Networks with Smart Electricity Networks 3.2 Necessary Technology for Smart Grid 3.3 Security Threats in Smart Electricity Networks 3.4 Data Attack on Smart Power Grids 3.5 Conservation-Based Designs 3.5.1 Protection of a Set of Basic Measurements 3.5.2 PMU-Based Protection 3.5.3 Diagnosis-Based Designs 3.5.4 Detection of Attacks Based on State Estimation Methods 3.5.5 Attack Detection Using Machine Learning Algorithms and Neural Networks 3.5.6 Other FDIA Defense Strategies 3.6 Mode Estimation in Smart Grids 3.7 Bad Data 3.7.1 Bad Data Types in the Power System 3.7.2 Machine Learning Performance 3.8 Summary References Chapter 4 Design and Modelling of a Stability Enhancement System for Wind Energy Conversion System 4.1 Introduction 4.1.1 Horizontal-Axis Wind Turbines 4.1.2 Vertical-Axis Wind Turbines 4.1.3 Power System Stabilization 4.1.4 Grid-Connected Requirements 4.2 Modelling of Wind Turbine 4.3 Proposed Research Work 4.3.1 FACTS Devices 4.3.2 Different Methodologies 4.4 Implemented Methodology 4.5 Implemented Fuzzy Rule 4.6 Simulation and Result 4.6.1 Software: MATLAB® Version R2019a 4.6.2 Result Analysis and Simulation 4.7 Conclusion Bibliography Chapter 5 Solar-Powered Smart Irrigation System 5.1 Introduction 5.1.1 Literature and Background Survey 5.1.2 Objectives 5.1.3 Functioning of the Prototype 5.2 Description 5.3 Design Aspect 5.4 Demonstration 5.4.1 Simulation 5.4.2 Graphs of Irrigation Module 5.4.3 Solar Tracker Graphs 5.4.4 Hardware Setup 5.4.5 Mobile App 5.5 Conclusion 5.5.1 Future Scope References Chapter 6 Future Transportation: Battery Electric Vehicles and Hybrid Fuel Cell Vehicles 6.1 Introduction 6.2 Electric Vehicle 6.2.1 Battery Electric Vehicles 6.2.2 Hydrogen Fuel Cell Vehicles (HFCVs) 6.3 Comparison Between Battery Electric Vehicle (BEV) and HFCV 6.3.1 Efficiency and Emission 6.3.2 Materials Availability 6.3.3 Infrastructure 6.3.4 Cost 6.3.5 Vehicle Weight and Sustainability 6.3.6 Benefits of FCV 6.3.7 Comparison with ICE 6.4 Conclusion References Chapter 7 Application of AI to Power Electronics and Drive Systems: Mini Review 7.1 Introduction 7.2 Neural Network 7.3 Fuzzy 7.4 Fault 7.5 Other Prediction Algorithms 7.6 Conclusion References Chapter 8 Analysis of Economic Growth Dependence on Energy Consumption 8.1 Introduction 8.2 Literature Review 8.3 Materials and Methods 8.4 Methodology 8.5 Estimation 8.6 Results 8.7 Potential Limitations of Results 8.8 Conclusion References Chapter 9 Artificial Intelligence Techniques for Smart Power Systems 9.1 Introduction 9.2 Smart Power System 9.3 Artificial Intelligence 9.3.1 Expert Systems 9.3.2 Database 9.3.3 Inference Engine 9.3.4 Supervised Learning 9.3.5 Unsupervised Learning Algorithms 9.3.6 Reinforcement Learning 9.4 Artificial Intelligence in Smart Power Systems 9.4.1 Smart Power System 9.4.2 Forecasting 9.4.3 Network Security 9.4.4 Economic Dispatching 9.4.5 Consumer and Resource 9.4.6 Resources Management 9.4.7 Home Energy Management 9.4.8 Energy Storage System 9.4.9 EV Charging Station 9.5 Conclusion References Chapter 10 IoT Contribution in Construct of Green Energy 10.1 Introduction 10.2 LoRa and IoT Monitoring System 10.3 Hybrid Microgrid with IoT 10.4 Hybrid Green Energy Harvesting Using IoT 10.5 Conclusion References Chapter 11 Smart IoT System-Based Performance Improvement of DC Power Distribution within Commercial Buildings Using Adaptive Nonlinear Ascendant Mode Control Strategy 11.1 Introduction: Background and Driving Forces 11.2 Research Background 11.3 Materials and Methods 11.3.1 Modelling of PV Cell 11.3.2 DC-DC Boost Converter 11.3.2.1 Boost Converter Circuit 11.3.2.2 Controller Design and Modes of Operation 11.3.3 AC-DC Converter 11.3.3.1 Buck-Boost Converter Circuit 11.3.3.2 Switching Pulse Generation of Buck-Boost Converter 11.3.3.3 Modes of Operation of Buck-Boost Converter 11.4 Optimization and Power Management Analysis of Converters Using Adaptive Nonlinear Ascendant Mode Control Strategy 11.4.1 Anam – Algorithm Steps 11.5 IoT Data Control System 11.5.1 IoT Data Communication 11.6 Results and Discussion 11.6.1 Performance Analysis of Solar-Based DC-DC Converter 11.6.2 Performance Analysis of AC-DC Converter 11.7 Conclusion References Chapter 12 Artificial Intelligence Methods for Hybrid Renewable Energy System 12.1 Introduction 12.2 Renewable Energy Sources 12.3 Application of Artificial Intelligence (AI) to Hybrid Energy Systems 12.3.1 AI for Power Grid and Smart Grid 12.3.2 AI in Electricity Trading 12.4 Hybrid Renewable Energy Systems (HRESs) with Machine Learning 12.5 Renewable Energy Forecasting Approaches 12.5.1 Prediction of Solar Energy 12.5.2 Prediction of Wind Energy 12.5.3 Prediction of Hydropower Energy 12.5.4 Prediction of Biomass Energy 12.6 Neural Network Techniques Applied in the Prediction of Renewable Energy 12.6.1 MLP Models 12.6.2 CNN Models 12.6.3 RNN Models 12.7 Learning Algorithms for ANN Training 12.8 Conclusion References Chapter 13 Bidirectional Converter Topology for Onboard Battery Charger for Electric Vehicles 13.1 Introduction 13.2 Working Principle of the OBC 13.3 Modes of Operation Mode 1 – Grid-to-Vehicle (G2V) Mode Mode 2 – Vehicle-to-Grid Mode (V2G) Mode 3 – High-Power Low-Voltage Charging (HP-LVC) Mode Mode 4 – Low-Power Low-Voltage Charging (LP-LVC) Mode 13.4 Design Specifications 13.5 Simulation Results 13.5.1 Mode 1 and Mode 2 Operation 13.5.2 Mode 3 – HP-LVC Circuit 13.5.3 Mode 4 – LP-LVC Circuit 13.6 Conclusion References Chapter 14 Design and Analysis of Split-Source Inverter for Photovoltaic Systems 14.1 Introduction 14.2 Topology Study of Inverters 14.2.1 Voltage-Source Inverter 14.2.2 Z-Source Inverter 14.2.3 Quasi-Z-Source Inverter 14.2.4 Single-Phase Split-Source Inverter (SSSI) 14.3 Simulation of Different Topologies 14.3.1 Gate Pulse Generation for Various Topologies 14.4 Comparison and Results 14.5 Conclusion References Chapter 15 Electric Vehicles and Smart Grid: Mini Review 15.1 Introduction: Background and Driving Forces 15.2 EV Charging 15.3 Vehicle to Grid and Grid to Vehicle 15.4 Vehicle to Grid and Grid to Vehicle 15.5 Effects in Vehicle Electrification 15.6 Conclusion References Chapter 16 Artificial Intelligence for the Operation of Renewable Energy Systems 16.1 Introduction 16.2 Global Energy Sector 16.2.1 Renewable Energy Sources 16.2.1.1 Wind Energy 16.2.1.2 Solar Energy 16.2.1.3 Geothermal Energy 16.2.1.4 Hydro Energy 16.2.1.5 Bioenergy 16.2.1.6 Hydrogen Energy 16.2.1.7 Hybrid Renewable Energy System (HRES) 16.3 Artificial Intelligence – Overview 16.4 Classification of AI for Renewable Energy Application – Review of AI Techniques 16.4.1 Artificial Neural Networks or Neural Network 16.4.2 Wavelet and Neural Networks (WNNs) 16.4.3 Genetic Algorithms and Particle Swarm Optimisation 16.4.4 Fuzzy Logic 16.4.5 Statistical Methods 16.4.6 Decision-Making Techniques 16.4.7 Hybrid System 16.5 AI Role and Application in the Renewable Energy System 16.5.1 AI in Wind Energy 16.5.2 Role of AI in Hydrogen Energy 16.5.3 AI in Hydropower Energy 16.5.4 AI in Solar Energy 16.5.5 AI in Bioenergy 16.5.6 AI in Geothermal Energy 16.5.7 AI in Hybrid Renewable Energy 16.6 Benefits of AI Application in Renewable Energy System 16.6.1 Energy Storage 16.6.2 Fault Prediction 16.6.3 Energy Efficiency Decision-Making 16.6.4 Utility Energy Planning and Management 16.6.5 Using AI to Identify Theft of Energy 16.6.6 Predictive Maintenance Monitoring and Energy Trading 16.6.7 Informing Policy 16.6.8 Reducing Fossil Fuel Impacts 16.7 Limitations of AI Application in the RES 16.7.1 Lack of Theoretical Background 16.7.2 Lack of Practical Expertise 16.7.3 Outdated Infrastructure 16.7.4 Economic or Financial Pressure 16.7.5 Vulnerability: To Cyberattacks 16.8 Prospects and Advancement in Artificial Intelligence for Effective Application in Renewable Energy Systems 16.8.1 The Proliferation of Data and the Advancement of ML Models 16.8.2 Increased Computational Ability and Intelligent Robotics 16.8.3 The Use of Artificial Intelligence to Guard Against and Identify Cyber-Crime 16.8.4 Enhance Renewable Energy Integration and Energy Efficiency Optimisation 16.8.5 The Relevance of Artificial Intelligence in the Smart Grid and the Internet of Things 16.8.6 Precision Stabilisation and Dependability, and Information Transfer and Communication 16.9 Conclusions Acknowledgement References Chapter 17 Application of Back Propagation Algorithm for Solar Radiation Forecasting in Photovoltaic System 17.1 Introduction 17.2 Problem Formulation 17.3 Solar Energy 17.3.1 Limitations of Solar Energy 17.4 Neural Networks 17.4.1 Introduction 17.4.2 Neural Networks Architecture 17.4.3 Back Propagation Algorithm 17.4.4 Application of NN in Solar Forecasting 17.5 Solar Radiation Forecasting 17.5.1 Input Parameters 17.5.2 Output Parameter 17.5.3 MATLAB® Training 17.5.3.1 Training Functions 17.5.4 Adaptation Learning Functions 17.5.5 Steps to Be Followed to Simulate and Train the Neural Network 17.6 Results 17.7 Conclusion Bibliography Chapter 18 Technical and Feasibility Analysis of Interconnected Renewable Energy Sources in Three Separate Regions: A Comparative Study 18.1 Introduction 18.2 Profile of Renewable Energy Resources 18.2.1 Solar Irradiation and Temperature Parameter 18.2.2 Specification of Wind Speed 18.2.3 Details of Biomass Resource 18.3 Explanation of HRES 18.3.1 Mathematical Modelling 18.3.1.1 Solar/PV System 18.3.1.2 Wind Farm 18.3.1.3 Generator 18.3.2 Component Parameter Utilized for Simulation 18.3.2.1 Solar/PV System 18.3.2.2 Wind Farm 18.3.2.3 System Converter 18.3.2.4 Generator 18.3.2.5 Grid 18.3.3 Problem Formulation 18.3.4 Economic Parameters Introduction 18.3.4.1 Total Investment Cost 18.3.4.2 Initial Capital Cost 18.3.4.3 Replacement Cost 18.3.4.4 Operation & Maintenance Cost 18.3.4.5 Salvage Value 18.3.4.6 Life Cycle Cost 18.3.4.7 Annualized Cost 18.3.4.8 Operating Cost 18.4 Optimization Results 18.4.1 Comparative Analysis of Optimization Results of Three Different Regions 18.5 Conclusion References Chapter 19 IoT-Based Prioritized Load Management Technique for PV Battery-Powered Building: Mini Review 19.1 Introduction 19.2 Internet of Things (IoT) in Smart Buildings 19.3 Photovoltaic Power Systems Integrated to Smart Buildings 19.4 Conclusion References Chapter 20 Application of Artificial Intelligence Techniques in Grid-Tied Photovoltaic System – An Overview 20.1 Introduction 20.2 Summary of AI and Grid-Tied PV System 20.3 Application and Role of AI Techniques in Grid-Tied PV Systems 20.3.1 PV Panel Array Reconfiguration 20.3.2 Islanding Detection 20.3.3 Harmonics Reduction 20.3.4 Meteorological Data 20.3.5 MPPT during Partial Shading 20.3.6 Optimal PV Sizing 20.4 Comparative Evaluation of AI 20.4.1 Speed 20.4.2 System Complex 20.4.3 Tuning 20.4.4 Monitoring and Implementation 20.5 Conclusion References Chapter 21 A Critical Review of IoT in Sustainable Energy Systems 21.1 Introduction: Background and Driving Forces 21.2 Data-Driven Smart Cities 21.3 Communication and AI 21.4 Sustainable Energy Management 21.5 Edge Computing 21.6 Energy Harvesting – A Future 21.7 Conclusion References Index