دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: O. V. Gnana Swathika, K. Karthikeyan, Sanjeevikumar Padmanaban سری: ISBN (شابک) : 9781032448282, 9781003374121 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: 344 [345] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 30 Mb
در صورت تبدیل فایل کتاب IoT and Analytics in Renewable Energy Systems, Volume II: AI, ML and IoT Deployment in Sustainable Smart Cities به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اینترنت اشیا و تجزیه و تحلیل در سیستم های انرژی تجدیدپذیر، جلد دوم: هوش مصنوعی، ML و استقرار اینترنت اشیا در شهرهای هوشمند پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
جلد 2 در مورد شهرهای هوشمندی صحبت می کند که از یک شبکه برق هوشمند با کمک انرژی تجدیدپذیر سرچشمه می گیرند. فناوریهای شبکه هوشمند مجموعهای از مزایای مانند قابلیت اطمینان، در دسترس بودن و انعطافپذیری را ارائه میدهند. شبکه های هوشمند به طور خارق العاده ای به تسهیل شهرها برای رسیدن به اهداف پایداری در طول زمان کمک می کنند.
Volume 2 speaks about Smart cities that emanate from a smart renewable energy aided power grid. The smart grid technologies offer an array of benefits like reliability, availability, and resiliency. Smart grids phenomenally contribute to facilitate cities reach those sustainability goals over time.
Cover Half Title Title Page Copyright Page Table of Contents Editors Contributors Chapter 1 Efficient Solutions From Smart Healthcare Ecosystem in the 21st Century – A Brief Study 1.1 Introduction 1.2 Healthcare Devices 1.3 Influence of IoT, AI and Big Data 1.4 Data Protection and Privacy 1.5 Conclusion Bibliography Chapter 2 IoT-Based Vehicle Monitoring System 2.1 Introduction 2.2 Related Work 2.3 Proposed System 2.3.1 App Creation Through MIT App Inventor 2.3.2 Firebase Realtime Database Code for Storing Username and Password for the Application 2.4 Results 2.4.1 Thingspeak Output 2.4.2 App Outputs 2.4.3 Firebase Realtime Database Storage for Username and Password 2.5 Conclusion and Future Works References Chapter 3 G-GET: A Donation App to Reduce Poverty 3.1 Introduction 3.2 Literature Review 3.3 Proposed Solution 3.4 Working 3.4.1 WANT HELP 3.4.2 WANT TO HELP 3.4.3 System Architecture 3.5 Technologies Used 3.6 Future Work 3.7 Conclusion Chapter 4 Enhanced K-Means with Automated k Estimation and Outlier Detection Using Auto-Encoder Neural Network 4.1 Introduction: Background and Driving Forces 4.1.1 Within-Cluster Sum of Squares 4.1.2 The Traditional "Elbow" Method 4.1.3 Auto-Encoders 4.1.4 Silhouette Score 4.2 Related Work 4.3 Proposed Algorithm 4.3.1 Naïve-Sharding Initialization 4.3.2 Automating the Process of Detecting Optimal k-Value 4.3.3 Noise Detection Using Auto-Encoders 4.3.3.1 Auto-Encoders 4.3.3.2 Anomaly Detection 4.4 Experiment Results 4.5 Conclusion References Chapter 5 LPG Leakage Detector 5.1 Introduction 5.2 Motivation 5.3 Description 5.4 Applications 5.5 Circuit Diagram 5.6 Components Explanation 5.7 Working Principle of Our Study 5.8 Code 5.9 Result and Inference 5.10 Conclusion 5.11 Future Scope Bibliography Chapter 6 IoT-Based Intelligent Garbage Monitoring Management System to Catalyse Farming 6.1 Introduction 6.2 Need 6.3 Background 6.4 Literature Survey 6.5 Objectives 6.6 Motivation 6.7 Goals 6.8 Implementation 6.9 Description 6.10 Results and Discussions 6.11 Summary 6.12 Conclusion References Chapter 7 IoT-Based Wildfire Detection and Monitoring System Using Predictive Analytics 7.1 Introduction 7.2 Related Work 7.3 Proposed System 7.3.1 Hardware Architecture 7.3.2 Software Architecture 7.3.3 Predictive Analysis 7.4 Results and Discussion 7.4.1 Hardware System 7.4.2 Software System 7.4.3 Predictive Analysis 7.5 Future Work 7.6 Conclusion References Chapter 8 Rainfall Prediction Model Using Artificial Intelligence Techniques 8.1 Introduction 8.2 Taxonomy of Rainfall Prediction Terms 8.2.1 Long-Term Prediction System 8.2.2 Short-Term Prediction System 8.3 Technologies Adopted for Rainfall Prediction Model 8.3.1 Machine Learning-Based Models 8.3.1.1 The ARIMA (Auto-Regressive Integrated Moving Rate) Model 8.3.1.2 Support Vector Machines 8.3.1.3 Support Vector Regression 8.3.1.4 Random Forest 8.3.2 Neural Networks and Deep Learning-Based Predictions Models 8.3.2.1 Artificial Neural Network 8.3.2.2 Back-Propagation Neural Network (BPNN) 8.3.2.3 Layer Recurrent Network 8.3.2.4 Multilayer Perceptron (MLP) 8.3.2.5 Convolutional Neural Networks (CNNs) 8.3.2.6 Long Short-Term Memory (LSTM) 8.4 Preprocessing Techniques in Rainfall Prediction System 8.4.1 Downsampling 8.4.2 Principal Component Analysis 8.4.3 Inverse Distance Weighting 8.5 Performance Measures in Rainfall Prediction Modules 8.5.1 Root Mean Square Error (RMSE) 8.5.2 Normal Standard Error (NSE) 8.5.3 Threat Score (TS) 8.6 Analysis of Existing Works 8.6.1 Publication Statistics 8.6.2 Country-Wise Systems 8.7 Datasets for Rainfall Prediction Model 8.7.1 Modules with Weather Numerical Dataset 8.7.2 Modules with Fusion of GIS and Weather Numerical Dataset 8.8 Conclusion Bibliography Chapter 9 Intelligent Coconut Harvesting System 9.1 Introduction 9.1.1 Background 9.1.2 Motivation 9.1.3 Objectives 9.2 Proposed Method 9.3 Implementation Modules 9.3.1 Coconut Harvesting Schedule 9.4 Intelligent Coconut Harvesting System Working Model 9.4.1 Classification of Ground Level Before Harvesting Coconuts 9.4.2 The Process 9.4.3 Measure Economic Feasibility of Harvesting 9.4.4 Existing Harvesting Methods 9.4.5 Method of Harvest Task to be Automated 9.5 Algorithm 9.6 Pseudo Code 9.7 Conclusion 9.8 Future Work Bibliography Chapter 10 IoT-Based Live Ambulance: Management and Tracking System 10.1 Introduction 10.2 Related Works 10.3 Proposed System 10.3.1 Flow Adopted for Designing the System 10.4 Result and Discussion 10.5 Conclusion and Future Scope References Chapter 11 Smart Robot Car for Industrial Internet of Things 11.1 Introduction 11.2 Background 11.2.1 Literature Survey 11.2.2 Problem Statement 11.2.3 Scope of the Work 11.3 Design and Implementation of the System 11.3.1 Block Diagram Analysis 11.3.2 Architecture Analysis 11.3.3 Algorithm 11.4 Software Implementation 11.4.1 Arduino Implementation 11.4.2 ThingSpeak Implementation 11.4.3 Google Firebase and Node-RED Implementation 11.4.4 Android Implementation 11.5 Hardware Implementation 11.5.1 Mechanism 11.6 Results and Discussion 11.7 Conclusion and Future Enhancement References Chapter 12 IoT-Based Monitoring System with Machine Learning Analytics of Transformer: Mini Review 12.1 Introduction 12.2 Transformer Health Index Development and Threshold Values Setting with the Help of Machine Learning 12.3 IoT-Based Transformer Monitoring 12.4 Conclusion References Chapter 13 Design of Earthquake Alarm 13.1 Introduction 13.1.1 Motivation 13.2 Description 13.3 Components Information 13.3.1 Piezoelectric Sensor 13.3.2 IC 555 13.3.3 Transistor (BC547) 13.4 Working Principle 13.5 Results 13.6 Future Scope 13.7 Conclusion Bibliography Chapter 14 Energy Demand and Flexibility of Energy Supply: A Case Study 14.1 Introduction 14.2 Literature Review 14.3 Materials and Methods 14.4 Thermotical Expression 14.5 Considerations in Econometrics 14.5.1 Data Overview 14.5.2 Problems with Using an Aggregate Energy Measure 14.5.3 Estimation and Outcomes Calculation 14.6 Conclusion References Chapter 15 Internet of Things-Based Toddler Security Monitoring and Management System 15.1 Introduction 15.2 Literature Survey 15.3 Proposed System 15.3.1 Face Detection Module (FDM) 15.3.2 Face Detection Module: Implementation 15.3.3 Face Recognition Module (FRM) 15.3.4 FRM Implementation 15.3.5 Door Detection Module (DDM) 15.3.6 Mobile Application 15.4 Conclusion References Chapter 16 Adaptive Traffic Control 16.1 Introduction 16.2 Literature Survey 16.3 Proposed Methodology 16.3.1 System Design 16.3.2 Implementation 16.3.3 Results and Discussion 16.4 Conclusion Bibliography Chapter 17 Genuine Investments for Economic Energy Outputs 17.1 Introduction 17.2 Literature and Background 17.2.1 Resource Curse 17.2.2 Sustainability 17.3 Model and Methodology 17.3.1 Theoretical Model 17.3.2 Empirical Strategy & Empirical Model 17.3.3 Data 17.4 Relationships to Be Expected 17.5 Data Limitations 17.5.1 Estimation and Results 17.6 Potential Weakness 17.7 Conclusion References Chapter 18 IoT-Based Power Theft Detection: Mini Review 18.1 A Comparative Study of Multiple Machine Learning Techniques for Detecting Electricity Theft 18.2 Power Theft Identification and Alert System Using IoT 18.3 Energy Monitoring and Theft System Using IoT 18.4 Hardware Implementation of Power Theft Detection System and Disconnection Using Smart Meter 18.5 Theft Detection Using Other Technologies 18.6 Conclusion References Chapter 19 Design and Implementation of Bluetooth-Enabled Home Automation System Abbreviations 19.1 Introduction 19.2 Home Automation Using Different Modules 19.3 Advanced Home Automation Systems 19.4 Home Automation Using Bluetooth Module HC-05 19.5 Power Supply 19.6 Main Circuit 19.7 Output 19.8 Conclusion References Chapter 20 IoT-Based Smart Electricity Management 20.1 Introduction 20.2 Related Work 20.3 Proposed System 20.3.1 App Creation Through MIT App Inventor Blocks 20.3.2 App Development Screen 20.3.3 Firebase Realtime Database Code for Storing Username and Password for the Application 20.4 Results 20.4.1 Arduino Output in Serial Monitor 20.4.2 NodeMCU Output in Serial Monitor 20.4.3 ThingSpeak Output 20.4.4 App Outputs 20.4.5 Firebase Realtime Database Storage for Username and Password 20.5 Conclusion and Future Works References Chapter 21 IoT-Based COVID-19 Patient Monitoring System 21.1 Introduction 21.2 Literature Review 21.3 Proposed Model 21.4 Block Diagram 21.5 Circuit Diagram 21.6 Implementation 21.7 Conclusion References Chapter 22 Interleaved Cubic Boost Converter 22.1 Introduction 22.2 Circuit Description 22.3 Modes of Operation 22.3.1 Mode 1 (S1-ON; S2-ON) 22.3.2 Mode 2 (S1-ON; S2-OFF) 22.3.3 Mode 3 (S1-ON; S2-ON) 22.3.4 Mode 4 (S1-OFF; S2-ON) 22.4 Voltage Gain and Design Details 22.5 Switch Ratings 22.6 Diode Ratings 22.7 Design Expressions 22.8 Simulation and Inference 22.9 Conclusion References Chapter 23 Emerging Role of AI, ML and IoT in Modern Sustainable Energy Management 23.1 Introduction 23.2 Role of Artificial Intelligence (AI) in the Renewable Energy Sector 23.2.1 Merits 23.2.2 Demerits 23.2.3 Applications of Artificial Intelligence 23.2.3.1 Improved Integration of Microgrids 23.2.3.2 Intelligent Centralization of Control Centres 23.2.3.3 Smart Grid with Intelligent Energy Storage (IES) 23.2.3.4 Supply Chain Management in Biogas Plants 23.2.3.5 Improved Safety and Reliability 23.2.3.6 Market Expansion 23.3 Role of Machine Learning (ML) in the Renewable Energy Sector 23.3.1 Merits 23.3.1.1 Solar Energy 23.3.1.2 Wind Energy 23.3.2 Demerits 23.3.3 Applications of Machine Learning 23.3.3.1 Accurately Predict Energy Demand 23.3.3.2 Optimize Energy Consumption 23.3.3.3 Prediction of Accurate Prices of Energy 23.3.3.4 Predict Merit Order of Energy Prices 23.3.3.5 Price Optimization Through Better Trading 23.3.3.6 Modelling of Bioenergy Plants 23.3.3.7 Predicting Malfunction of Wind Turbines 23.3.3.8 Increase Power Plant Profitability with Optimized Scheduling and Pricing 23.3.3.9 Reduce the Potential for Human Error 23.3.3.10 Predict Customer Lifetime Value (CLV) 23.3.3.11 Predict the Probability of Winning a Customer 23.3.3.12 Make Incredibly Specific Offers to Customers 23.3.3.13 Reduction in Consumer Turndown 23.4 Role of the Internet of Things in the Renewable Energy Sector 23.4.1 Types of Internet of Things 23.4.1.1 Actuators 23.4.1.2 Sensors 23.4.1.3 Communication Technologies 23.4.2 Merits 23.4.2.1 Intelligent Grid 23.4.2.2 Sustainability 23.4.2.3 Cost-Cutting and Data Management 23.4.2.4 New Business Prospects 23.4.2.5 Advanced Analytics 23.4.3 Demerits 23.4.4 Applications of Internet of Things 23.4.4.1 Smart Grid Management 23.4.4.2 Efficient Smart Meters 23.4.4.3 Balanced Distribution Systems 23.4.4.4 Higher Cost-Efficiency 23.4.4.5 Better Transparency in the Way People Use Electricity 23.4.4.6 Supreme Residential Solutions 23.4.4.7 Monitoring Biogas Production 23.4.4.8 Better Control, Automation and Futuristic Possibilities 23.5 Future Scopes in AI, ML and IoT in the Renewable Energy Sector 23.6 Conclusion Bibliography Chapter 24 Automated Water Dispenser – A Hygiene Solution for Pandemic 24.1 Introduction 24.2 Methodology 24.3 Simulation Model: Automated Filling of Water in Tanks 24.4 Circuit Modelling in TinkerCAD 24.5 Experimental Setup 24.6 Results and Discussion 24.7 Conclusion and Future Scope References Chapter 25 Review of IoT-Based Smart Waste Management Systems 25.1 Introduction 25.2 Smart Segregation of Waste Using Embedded System Solutions 25.3 Cloud Integration and IoT-Based Solutions 25.4 Conclusion References Chapter 26 Cyber Security in Smart Energy Networks 26.1 Introduction 26.2 Communication Network Architecture in Smart Grids 26.2.1 Producing Section 26.2.2 Transfer Section 26.2.3 Distribution Section 26.2.4 Consumer Section 26.2.5 Market Section 26.2.6 Service Providers Section 26.2.7 Operation Section 26.3 Wireless Sensor Network 26.3.1 Zigbee 26.3.2 Low-Power Wi-Fi 26.4 Standards and Protocols of Communication in Smart Networks 26.4.1 Protocol DNP3 26.4.2 Protocol IEC61850 26.5 Smart Network Security Goals 26.5.1 Availability 26.5.2 Integrity 26.5.3 Confidentiality 26.6 The Most Important Cyber-Attacks in Smart Networks 26.7 Intelligent Measuring Equipment and Home Networks 26.8 Security and Privacy of WSN-Based Consumer Applications 26.9 Conclusion References Index