دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Srijan Bhattacharya (editor)
سری:
ISBN (شابک) : 1032069457, 9781032069456
ناشر: CRC Pr I Llc
سال نشر: 2022
تعداد صفحات: 200
[215]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Ionic Polymer-Metal Composites: Evolution, Application and Future Directions به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کامپوزیت های پلیمر-فلز یونی: تکامل، کاربرد و جهت گیری های آینده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بر مواد پلیمری الکترواکتیو معروف به یونیک پلیمر فلزی کامپوزیت (IPMC) تمرکز دارد که کاربرد منحصربفردی به عنوان حسگر و محرک دارد که در حوزه های مختلف تحقیقات مهندسی و علمی کاربرد فراوانی دارد. جدای از مبانی مفهوم IPMC، کاربردهای مختلف به طور گسترده در سرفصل هایی از جمله فضا، زیر آب و مقیاس نانو، از جمله فرآیندهای تولید، پوشش داده شده است. فصل های اختصاصی برای کاربردهای روباتیک و زیست پزشکی و شکاف های احتمالی تحقیقاتی گنجانده شده است. دیدگاههای تحقیقاتی آینده برای IPMC نیز مورد بحث قرار گرفته است.
ویژگیها:
این کتاب برای محققان، دانشجویان فارغ التحصیل و متخصصان در مواد و مهندسی مکانیک، رباتیک، مکاترونیک، مهندسی زیست پزشکی، و فیزیک.
This book focuses on electro active polymer material known as Ionic Polymer Metal Composite (IPMC) having unique applicability as sensor and actuator which finds extensive use in various domain of engineering and science research. Apart from fundamentals of the IPMC concept, various applications are covered extensively across the chapters including space, underwater and nanoscale, including manufacturing processes. Dedicated chapters are included for robotics and biomedical applications and possible research gaps. Future research perspectives for IPMC are also discussed.
Features:
This book is aimed toward researchers, graduate students and professionals in materials and mechanical engineering, robotics, mechatronics, biomedical engineering, and physics.
Cover Half Title Title Page Copyright Page Table of Contents Preface Acknowledgments Biography Contributors Chapter 1 Introduction to IPMC, Its Application and Present Scenario 1.1 Introduction 1.2 Literature Survey 1.2.1 Electrical Characterization of IPMC 1.2.2 Control Issues of IPMC 1.2.3 IPMC Grippers 1.2.4 Compliant Materials for Microgripper 1.2.5 IPMC Applications in Space 1.3 Summary References Chapter 2 Ionic Polymer– Metal Composite Actuators: Methods of Preparation 2.1 Introduction 2.2 Actuation Mechanism 2.3 Literature Review 2.3.1 Fabrication Techniques 2.3.2 Chemical Decomposition Method 2.3.3 Mechanical Plating Method 2.4 Methodology 2.4.1 Fabrication of Single- Layered Ag- IPMC 2.4.2 Fabrication of Multilayered Ag- IPMC 2.5 Result Discussion 2.5.1 Characterization of Ag-IPMC 2.5.1.1 Morphological and Microstructure Analysis 2.5.1.2 Bending Characteristics of the Fabricated Ag-IPMC 2.6 Conclusions References Chapter 3 A Study of Movement, Structural Stability, and Electrical Performance of a Harvesting System Based on Ionic Polymer– Metal Composites 3.1 Introduction 3.2 Modeling of the IPMC Movement and Ocean Wave Kinetic Energy 3.2.1 Modeling of the Relationship between the Input Bending Angle and the Output Voltage 3.2.2 Fabrication of IPMC 3.2.3 Ocean Environmental Conditions 3.2.4 Simulation and Experimental Setup 3.3 Results and Discussion 3.3.1 The Pressure and Motion Results 3.3.2 Effect of Wave Direction and Frequency on the Movement of the Modules 3.3.3 Effect of the Wetted Surface Area and Mass on the Movement of the Modules 3.3.4 Performance Test of the Ocean Kinetic Energy-Harvesting Modules 3.4 Conclusions References Chapter 4 Application of Ionic Polymer Metal Composite (IPMC) as Soft Actuators in Robotics and Bio-Mimetics 4.1 Introduction 4.2 Past Literature Survey on the Development of IPMC Actuators, Modeling, Control and Various Robotic and Biomimetic Applications 4.3 Development of Single- Walled Carbon Nanotube ( SWNT)- Based IPMC Soft Actuators 4.3.1 Material Requirements 4.3.1.1 Materials 4.3.1.2 Reagent Solutions 4.3.1.3 Functionalization of SWNTs 4.3.1.4 Sulfonation of PEES 4.3.2 Fabrication of IPMCs 4.3.3 Characterization 4.3.3.1 Ionic Conductivity 4.3.3.2 WU, IEC and PC 4.3.3.3 FTIR Study 4.3.3.4 Tensile Strength 4.3.3.5 SEM, EDX and TEM Studies 4.3.3.6 Porosity 4.3.3.7 UV– Visible Studies 4.3.3.8 Thermal Analysis 4.3.3.9 Electrochemical Characterization 4.3.3.10 Electromechanical Characterization 4.4 Development of IPMC Soft Actuator- Based Robotic System for Robotics Assembly 4.4.1 IPMC-Based Microgripper for Remote Center Compliance ( RCC) Assembly 4.4.2 An IPMC- Based Two-Finger Microgripper for Handling Millimeter- Scale Components 4.4.3 An IPMC- Based Artificial Muscle Finger Actuated through EMG 4.4.4 Robotic Micro- Assembly Using IPMC Microgrippers 4.5 Conclusions Acknowledgment References Chapter 5 Inverse Kinematic Modeling of Bending Response of Ionic Polymer Metal Composite Actuators 5.1 Introduction 5.2 Soft Robotic Materials: Research Status and Current Trends 5.3 Simulating Soft Actuators: A Robotic Perspective 5.3.1 Early Developmental Efforts and Modelling Challenges 5.3.2 Hyper-Redundant Serial Chain Approximation of Soft Robotic Actuators 5.3.3 The Jacobian Transpose and Pseudo- Inverse Solution to Inverse Kinematics 5.3.4 ‘ Tractrix’- Based Solution to Inverse Kinematics 5.3.4.1 Experimental Validation by Simulating Doped IPMC Actuators 5.4 Design and Development of Compliant Soft Actuated Grippers: An Application of Hyper- Redundant Kinematic Modelling 5.5 Conclusions and Future Prospects Acknowledgements References Chapter 6 Selection of Elastomer for Compliant Robotic Gripper Harnessed with IPMC Actuator 6.1 Introduction 6.2 Multi-Criteria Decision Making ( MCDM) Problem Formulation 6.3 Technique for Order of Preference by Similarity to Ideal Solution 6.4 Complex Proportional Assessment 6.5 Multi- Objective Optimization on the Basis of Ratio Analysis 6.6 ELECTRE II 6.7 Determination of Entropy Weight 6.8 Spearman’s Rank Correlation Coefficient 6.9 Criteria for Compliant Material Selection 6.9.1 Hardness 6.9.2 Density 6.9.3 Tensile Strength 6.9.4 Elongation at Break 6.9.5 Cost 6.10 Compliant Materials 6.10.1 Ethylene– Propylene Diene Monomer ( EPDM) 6.10.2 Ethylene– Vinyl Acetate ( EVA) 6.10.3 Ethylene– Propylene Monomer ( EPM) 6.10.4 Polydimethylsiloxane ( PDMS) 6.10.5 Polyurethane ( PU) 6.10.6 Ethylene– Propylene Terpolymer (EPT) 6.10.7 Polyvinylidene Fluoride ( PDVF) 6.11 Results 6.11.1 Weight Determination by Entropy Method 6.11.2 Solution by TOPSIS 6.11.3 Solution by COPRAS 6.11.4 Solution by MOORA 6.11.5 Solution by ELECTRE II 6.12 Discussion 6.13 Conclusions References Chapter 7 Study of Polar Region Atmospheric Electric Field Impact on Human Beings and the Potential Solution by IPMC 7.1 Introduction 7.2 Atmospheric Electric Field in Polar Regions: Global Electric Circuit 7.3 Generation of Air– Earth Current ( Maxwell Current) 7.4 Diurnal Variation of Fair- Weather Atmospheric Electric Field, Conductivity and Air– Earth Current Density in Polar Regions 7.4.1 Atmospheric Electric Field Measurement 7.4.2 Point Discharge Current: Impact on Polar Vertical Air– Earth Current Density 7.5 Environmental Electrostatic Field and Air Ions ( Generation of Earth’s Vertical Electric Field) 7.6 Effects of Human Body Electrostatic Generation in Context with Polar Regions 7.7 Energy Harvesting from Human Body Electrostatic Discharge 7.8 Investigation into Electroactive Polymer ( EAP)- Based Technologies for Human Body Static Nullification in Polar Regions 7.8.1 Selectivity Criteria and Comparison of Different EAP Materials 7.8.2 Ionic Polymer– Metal Composites ( IPMCs): General Fabrication Process 7.8.2.1 Physical Metal Loading 7.8.2.2 Casting Method 7.8.2.3 Hot Pressing Method 7.8.2.4 Electrodes Plating Method 7.8.2.5 Fabrication Method Using Silver Nanopowders 7.8.3 Dynamic Modelling of IPMC Actuator 7.8.3.1 Generalized Study on Electrical and Mechanical Parameters of IPMC 7.8.3.2 Comparison between Active Sensing, Passive Sensing and Self- Sensing Actuation ( SSA) 7.8.3.3 Performance of IPMC Sensors 7.9 The Proposed IPMC- Based Methodology ( Wearable Electronic Device Prototype Design) 7.10 Discussion and Conclusions References Chapter 8 Future Directions on IPMC Research 8.1 Introduction 8.2 Future Research Objectives and Methodology 8.2.1 Study of the Characteristics of IPMC 8.2.2 IPMC Sensor Parameters Study 8.2.3 Mechatronics Applications of IPMC with Different Shape of Object Grasp Capability by Human Finger 8.2.4 Design and Development of IPMC Analogous to EMG Sensors for Biomedical Applications 8.2.5 Design and Development of IPMC- Based Taste Sensors 8.2.6 Bioinstrumentation Applications of IPMC for Moisture Capturing Capability in Space 8.2.7 3D Printing of IPMC 8.3 Summary References Index