دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2021
نویسندگان: Lei Zhou
سری: Advances in Experimental Medicine and Biology, 1349
ISBN (شابک) : 9811642532, 9789811642531
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 0
زبان: Englis
فرمت فایل : RAR (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 67 مگابایت
در صورت تبدیل فایل کتاب Ion Channels in Biophysics and Physiology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کانال های یونی در بیوفیزیک و فیزیولوژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب موضوعات نسبتاً جدید و قابل توجهی را در زمینه تحقیقات کانال یونی گردآوری می کند. کانال های یونی پایه مولکولی برای تحریک پذیری غشاء در سلول های موجود در سیستم های قلبی عروقی و عصبی را تشکیل می دهند. در بسیاری از سلولهای غیرقابل تحریک، کانالهای یونی به عملکردهای فیزیولوژیکی متنوعی کمک میکنند، از جمله ترشح ترکیبات سیگنالدهنده مانند هورمونها و انسولین، تنظیم حجم سلول، سیگنالدهی داخل سلولی، بهویژه سیگنالدهی Ca2+ و غیره. بسیاری از بیماریهای انسانی به عملکردهای غیرطبیعی کانال و بیان غشایی معیوب پروتئین های کانال از سوی دیگر، کانال های یونی مدل های عالی برای مطالعه بیوفیزیک پروتئین، به ویژه تنظیم آلوستریک عملکرد پروتئین توسط محرک های متفرقه هستند. بنابراین، تحقیق بر روی کانالهای یونی برای درک بیوفیزیک پروتئین پایه و عملکردهای فیزیولوژیکی متنوع معنادار است. چنین اطلاعات حیاتی همچنین به توسعه درمان های جدید و موثر برای بیماری های انسانی مرتبط کمک می کند. این کتاب به فارغ التحصیلان و دانشمندان در هر دو سطح پایه و بالینی درک جامعی از پیشرفت های پیشرفته و یک پلت فرم مفید و محرک برای پاسخگویی به سوالات خود در مورد کانال های یونی ارائه می دهد.
This book gathers relatively recent and significant topics in the field of ion channel research. Ion channels form the molecular basis for membrane excitability in cells present in the cardiovascular and nervous systems. In many non-excitable cells, ion channels contribute to diverse physiological functions, including the secretion of signaling compounds like hormones and insulin, cell volume regulation, intracellular signaling, especially Ca2+ signaling, etc. Many human diseases have been attributed to abnormal channel functions and defective membrane expression of channel proteins. On the other hand, ion channels are excellent models for studying protein biophysics, especially the allosteric regulation of protein function by miscellaneous stimuli. Therefore, research on ion channels carries significant meaning for the understanding of basic protein biophysics and diverse physiological functions. Such vital information also assists in developing novel and effective treatments for related human diseases. This book provides graduates and scientists in both basic and clinical levels a comprehensive understanding of cutting-edge advances and a useful and stimulating platform for tackling their own questions about ion channels.
Contents Part I: Biophysical Mechanism Chapter 1: Venom-Derived Peptides Inhibiting Voltage-Gated Sodium and Calcium Channels in Mammalian Sensory Neurons 1.1 Introduction 1.1.1 Sensory Neurons and Pain Signaling 1.1.2 Venom-Derived Peptides 1.2 Voltage-Gated Sodium Channels 1.3 Voltage-Gated Calcium Channels References Chapter 2: Advancing Ion Channel Research with Automated Patch Clamp (APC) Electrophysiology Platforms 2.1 Introduction 2.2 APC Platforms: Key Developments Over Two Decades 2.3 Early APC Adoption: Ion Channels in Drug Discovery 2.4 APC: Advancing Ion Channel Research 2.4.1 Control of Internal Cell Solution Dialysis or Exchange 2.4.2 Control of Experimental Temperature 2.4.3 Recording Site Fluid Applications: Microfluidics and Fixed-Well 2.4.4 Planar Patch Clamp Recording Plates 2.4.5 Multi-Hole Patch Clamp 2.4.6 Pressure Control 2.4.7 Optogenetics and Optical Stimulation 2.5 Concluding Remarks References Chapter 3: Ion Channels in Biophysics and Physiology: Methods and Challenges to Study Mechanosensitive Ion Channels 3.1 Mechanical Properties of Biological Materials 3.2 Detection of Mechanical Forces at the Cellular Level 3.3 Principles of Mechano-Electrical Transduction in Mechanosensitive Ion Channels 3.4 Families of Mechanosensitive Ion Channels 3.5 Experimental Methods to Stimulate Mechanosensitive Ion Channels 3.6 Computational Approaches to Study Gating Mechanisms in Mechanosensitive Ion Channels References Chapter 4: The Polysite Pharmacology of TREK K2P Channels 4.1 Introduction 4.2 The TREK Subfamily: Model Polymodal Ion Channels 4.3 The Polysite Pharmacology of TREK Channels 4.3.1 The Keystone Inhibitor Site: Block by Polynuclear Ruthenium Amines 4.3.2 The K2P Modulator Pocket: A Cryptic Small Molecule Binding Site for K2P Control 4.3.3 The Fenestration Site: A Binding Site for Activators and Inhibitors 4.3.4 The Modulatory Lipid Site: PIP2 and the C-Terminal Tail 4.4 Subtype Specific Modulators in the TREK Subfamily 4.5 Perspectives on K2P Channel Polysite Pharmacology References Chapter 5: Calcium Channel Splice Variants and Their Effects in Brain and Cardiovascular Function 5.1 Ion Channels in Biophysics and Physiology 5.1.1 Introduction to LTCC 5.1.2 Structure and Localization of LTCC 5.1.3 LTCC in the Cardiovascular System-Function 5.1.4 Channelopathies in the CVS-Cav1.2 5.1.4.1 Timothy Syndrome 5.1.4.2 Brugada Syndrome 5.1.5 Channelopathies in the CVS-Cav1.3 5.1.5.1 Cardiac Dysfunction/Arrhythmia 5.1.6 Regulation of Cav1.2 5.1.7 Conclusion 5.2 CaV2.1 5.2.1 History of CaV2.1 Channel 5.2.2 CaV2.1 Channel Diversity 5.2.3 Exon 31 5.2.4 Exon 37 5.2.5 Exon 43/44 5.2.6 Exon 47 5.2.7 Modulation of Calcium Channels 5.2.7.1 Voltage-Dependent Inactivation (VDI) 5.2.7.2 Ca2+-Dependent Inactivation (CDI) 5.2.7.3 Ca2+-Dependent Facilitation (CDF) 5.2.7.4 CaV2.1 Channelopathies 5.2.8 Episodic Ataxia Type 2 (EA2) 5.2.9 Familial Hemiplegic Migraine Type 1 (FHM1) 5.2.10 Spinocerebellar Ataxia Type 6 (SCA6) 5.2.11 Psychiatric Disorders 5.3 Conclusion References Chapter 6: Structure-Function of TMEM16 Ion Channels and Lipid Scramblases 6.1 Introduction 6.2 Molecular Identifications of TMEM16 Proteins 6.2.1 TMEM16A and TMEM16B Form the Canonical Ca2+-Activated Chloride Channels 6.2.2 TMEM16F Encodes a Dual Functional CaPLSase and Nonselective Ion Channel 6.3 Structure and Function of TMEM16 Proteins 6.3.1 Biophysical Properties of TMEM16 Ion Channels 6.3.2 Fluorescence Methods Enable Biophysical Characterization of TMEM16 CaPLSases 6.3.3 Overall Architecture of TMEM16 Proteins 6.3.4 Ca2+-Dependent Activation Mechanism 6.3.5 Voltage-Dependent Activation of TMEM16 Ion Channels 6.3.6 Ion Selectivity of the TMEM16A/B CaCCs 6.3.7 Ion Selectivity of the Dual-Functional TMEM16F 6.3.8 Phospholipid Permeation Through TMEM16 CaPLSases 6.3.8.1 Classical ``Credit Card´´ Model for Phospholipid Permeation 6.3.8.2 Membrane Bending/Distortion Is a Common Feature in TMEM16 Scramblases 6.3.8.3 ``Lipidic Pore´´ Dual Permeation Model Derived from the ``Credit-Card´´ Model 6.3.8.4 ``Ions-in-the-Pore and Lipids-Out-of-the-Groove´´ Dual Permeation Model 6.3.8.5 ``Alternating Pore-Cavity´´ Dual Permeation Model 6.3.9 TMEM16 CaPLSase Gating 6.4 Future Prospective References Chapter 7: Distribution and Assembly of TRP Ion Channels 7.1 Introduction 7.2 Distribution of TRP Channels and Its Implications for Health 7.2.1 Cellular Distribution of TRP Channels 7.2.2 TRP Channels Distribution in Healthy Tissues and Organs 7.2.2.1 Distribution of TRPCs in Mammals TRPC1 TRPC2 TRPC3 TRPC4 TRPC5 TRPC6 TRPC7 7.2.2.2 Distribution of TRPMs in Mammals TRPM1 TRPM2 TRPM3 TRPM4 TRPM5 TRPM6 TRPM7 TRPM8 7.2.2.3 Distribution of TRPVs in Mammals TRPV1 TRPV2 TRPV3 TRPV4 TRPV5 TRPV6 7.2.2.4 Distribution of TRPA1 in Mammals 7.2.2.5 Distribution of TRPMLs in Mammals 7.2.2.6 Distribution of TRPPs in Mammals 7.2.3 TRP Channels in Abnormal Tissues and Organs 7.2.3.1 TRP Channels Distribution in Cancers 7.2.3.2 TRP Channels in Other Diseases 7.3 Assembly of TRP Channels 7.3.1 Intra-Subunit Interactions Affecting TRP Channel Assembly and Trafficking 7.3.2 Assembly of TRP Channels Within and Between Subfamilies 7.3.2.1 Assembly Within TRP Subfamilies 7.3.2.2 Assembly Between TRP Subfamilies 7.3.3 Assembly Between TRPP Channels and Receptor-like Polycystin-1 Family Proteins 7.3.4 Specificity of TRP Channel Subunits Co-Assembly 7.4 Discussion and Outlook 7.4.1 Relevance of TRP Channel Distribution to Their Function 7.4.2 Deciphering TRP Channel Assembly for a Better Understanding of Their Distribution and Functions 7.4.3 Summary References Chapter 8: Regulation of Ion Channel Function by Gas Molecules 8.1 Ion Channels in General 8.2 Chemical Physics of Gasotransmitters in General 8.3 Ion Channel Modification Via NO-Mediated S-Nitrosylation 8.3.1 NMDA Receptors 8.3.2 Voltage-Gated Na+ Channels 8.3.3 Acid Sensing Ion Channels (ASICs) 8.3.4 Cyclic-Nucleotide-Gated Ion Channels 8.3.5 Transient Receptor Potential Channels 8.3.6 Voltage-Gated K+ Channels 8.3.7 ATP-Sensitive Potassium Channels 8.3.8 Large-Conductance Ca2+-Activated K+ Channels 8.3.9 Voltage-Gated Ca2+ Channels 8.3.10 Ryanodine Receptors 8.4 Ion Channel Modification Via H2S and S-Sulfhydration 8.4.1 ATP-Sensitive Potassium Channels 8.4.2 Transient Receptor Potential Channels 8.4.3 L-Type Calcium Channels 8.5 Singlet Oxygen 8.6 Carbon Monoxide (CO) as a Gasotransmitter and Crosstalk Among Different Regulatory Pathways References Chapter 9: DEG/ENaC Ion Channels in the Function of the Nervous System: From Worm to Man 9.1 Introduction 9.2 DEG/ENaC Channels Structure 9.3 Modulation of DEG/ENaCs by Homologous and Accessory Subunits 9.4 Neuronal DEG/ENaC Channels in Mechanosensation 9.5 Neuronal DEG/ENaC Channels in Other Sensory Modalities 9.6 DEG/ENaC Channels in Neurotoxicity and Axonal Degeneration 9.7 C. elegans DEG/ENaC Channel UNC-8 is Involved in Synaptic Remodeling 9.8 DEG/ENaC Channels in Synaptic Transmission 9.9 Expression and Function of DEG/ENaC Channels in Glia References Part II: Physiological Function Chapter 10: Glial Chloride Channels in the Function of the Nervous System Across Species 10.1 ClC-2 10.1.1 Structure and Function 10.1.2 ClC-2 in the Vertebrate Brain 10.1.3 Insights into the Function of Glial ClC Channels from Studies in Invertebrates 10.2 Acid and Swelling-Activated Cl- Channels (LRRC8 or SWELL1) 10.3 Acid-Sensitive Outwardly Rectifying (ASOR) Anion Channels 10.4 Maxi Chloride Channels 10.5 Pannexins as Cl- Channels 10.5.1 Structure and Function 10.5.2 Pannexins in the Nervous System of Vertebrates 10.5.3 Invertebrate Innexins 10.6 Bestrophins 10.6.1 Structure and Function 10.6.2 Bestrophins in the Mammalian Nervous System 10.6.3 Bestrophins in Invertebrates References Chapter 11: Physiological and Pathological Relevance of Selective and Nonselective Ca2+ Channels in Skeletal and Cardiac Muscle 11.1 Introduction 11.2 L-Type Ca2+ Channels and Ryanodine Receptors form the Core Functional Unit of Excitation-Contraction Coupling 11.3 Ca2+ Permeation Through Voltage-Insensitive Channels Is Altered in Striated Muscle Under Pathological States References Chapter 12: TRPV1 in Pain and Itch 12.1 Introduction 12.2 TRPV1 Biology in Pain and Itch 12.2.1 The Basics of Pain and Itch 12.2.2 TRPV1 and TRPV1+ Sensory Neurons 12.2.3 TRPV1 in Pain Sensation 12.2.3.1 Pain Classification 12.2.3.2 TRPV1 Serves as the Sensor for Pain Sensation 12.2.3.3 TRPV1+ Sensory Neuron in Pain Sensation 12.2.3.4 TRPV1-TRPA1 Complex in Pain Sensation 12.2.4 TRPV1 in Itch Sensation 12.2.4.1 Itch Is a Distinct Neural Process from Pain 12.2.4.2 TRPV1+ Sensory Neuron in Itch Sensation 12.2.4.3 Role of TRPV1 Ion Channel for Itch Signaling 12.3 TRPV1 Activity Modulation in Pain and Itch 12.3.1 TRPV1 Upregulation in the Context of Pain 12.3.2 TRPV1 Upregulation in the Context of Chronic Itch 12.3.3 TRPV1 Structure Modulation 12.3.4 TRPV1 Phosphorylation 12.3.4.1 PKC Pathway 12.3.4.2 PKA Pathway 12.3.4.3 CaMKII-Dependent Phosphorylation 12.3.5 Other Modulators 12.3.5.1 Protons 12.3.5.2 Pirt 12.3.5.3 GABA-Autocrine Feedback 12.3.6 Pain-to-Itch Switch 12.4 TRPV1+ Neurons as the Center of Neuroimmune Interactions 12.4.1 Mast Cells: A Classic Neuroimmune Paradigm 12.4.2 Beyond Mast Cells: Other Immune Cells Regulated by Nociceptors 12.5 Therapeutic Strategy and Perspectives 12.5.1 Agonist 12.5.2 Antagonist 12.5.3 TRPV1 Activity-Dependent Silencing by QX-314 12.6 Summary References Chapter 13: Lysosomal TRPML1 Channel: Implications in Cardiovascular and Kidney Diseases 13.1 Introduction 13.2 Characteristics of Lysosomal TRPML1 Channels 13.2.1 Subcellular Localization of Mammalian TRPML1 Channels 13.2.2 Biophysical Properties of TRPML1 Channels 13.3 Agonists and Blockers of TRPML1 Channel 13.3.1 NAADP 13.3.2 Phosphoinositides 13.3.3 Synthetic Agonists and Blockers 13.4 Associated Proteins of TRPML1 Channel 13.4.1 ALG-2 13.4.2 Hsc70 13.4.3 LAPTM 13.5 Regulatory Mechanisms of TRPML1 Channel Activity 13.5.1 Cathepsin B 13.5.2 TOR-TFEB Signaling Pathway 13.5.3 Phosphorylation 13.5.4 Regulation of TRPML1 Channel Activity by Sphingolipids 13.5.5 Redox Regulation of TRPML1 Channel Activity 13.6 Functions of TRPML1 Channels in Health and Diseases 13.6.1 Lysosomal pH Control 13.6.2 Fusion and Fission of Cell Membrane 13.6.3 Autophagy 13.6.4 Lysosomal Exocytosis 13.6.5 Mitochondrial Function 13.6.6 Triggering of Large Ca2+ Release from Sarcoplasmic Reticulum 13.6.7 Podocyte Differentiation and Podocytopathy 13.6.8 Exosome Release and Arterial Medial Calcification 13.6.9 Lysosome-Mediated Autophagic Flux and Atherogenesis 13.7 Concluding Remarks References Chapter 14: Store-Operated Calcium Entry in the Cardiovascular System 14.1 Introduction 14.2 Cardiac Excitation-Contraction Coupling 14.3 Expression of SOCE Components in the Heart 14.3.1 STIM 14.3.2 ORAI 14.3.3 TRPC 14.4 SOCE During Cardiac Development 14.5 SOCE in the Vascular System 14.5.1 SOCE in Vascular Smooth Muscle Cells 14.5.2 SOCE in Endothelial Cells 14.5.3 SOCE and Vascular Diseases 14.5.3.1 Thrombosis 14.5.3.2 Restenosis 14.5.3.3 Atherosclerosis 14.5.3.4 Systemic Arterial Hypertension 14.5.3.5 Pulmonary Arterial Hypertension 14.6 SOCE and Cardiac Diseases (see Table 14.1) 14.6.1 Cardiac Hypertrophy and Heart Failure 14.6.2 Arrhythmias References Chapter 15: Physiological Functions, Biophysical Properties, and Regulation of KCNQ1 (KV7.1) Potassium Channels 15.1 Introduction 15.2 Physiological Roles for KV7.1 and IKs Channels 15.3 KV7.1 and KCNQ1/KCNEx Channel Biophysics 15.4 KV7.1 Channel Structure 15.5 KCNQ1 Channel Pharmacology 15.6 KCNQ1 Channel Regulation 15.7 KCNQ1 and Disease 15.7.1 Cardiac Arrhythmias 15.7.2 Diabetes and Cancer References 16: The Role of Thermosensitive Ion Channels in Mammalian Thermoregulation 16.1 Introduction 16.2 The Organization of the Thermoregulatory Circuits 16.2.1 Thermal Afferent Pathways 16.2.2 Efferent Pathways Controlling Thermoeffectors 16.3 Thermosensitive Ion Channels and Their Functions in Thermoregulation 16.3.1 Thermosensitive Properties of the Ion Channels 16.3.1.1 TRP Channels TRPM8 TRPA1 TRPC5 TRPV1 TRPV2 TRPV3 TRPV4 TRPM2 TRPM3 16.3.1.2 TREK Channels 16.3.1.3 ANO1 (TMEM16A) 16.3.1.4 STIM1-ORAI1 Channel Complex 16.4 Summary References Chapter 17: Mechanotransduction Ion Channels in Hearing and Touch 17.1 Introduction 17.2 Mechanosensitive Ion Channels in Touch Sensation 17.2.1 NOMPC in Gentle Touch Sensation 17.2.2 Mechanogating Mechanism of NOMPC 17.2.3 Drosophila Brv1 in Light Touch Sensation 17.3 Mammalian TMCs in Hearing 17.3.1 Molecular Components of MET Channels in Hair Cells 17.3.2 Evidence Supporting TMC as Pore-Forming Subunit of the MET Channel 17.3.3 Recent Evidence for TMC as a Mechanosensitive Channel 17.4 Conclusions and Perspectives References Chapter 18: The Functional Properties, Physiological Roles, Channelopathy and Pharmacological Characteristics of the Slack (KC... 18.1 The Slack Channel (Slo2.2, KCNT1, KCa4.1) 18.2 Structural and Functional Domains of Slack Channels 18.3 The Phosphorylation Modulation on the Gating and Membrane Expression of the Slack Channel 18.4 The Expression Patterns and Physiological Function of the Slack Channel 18.5 The Role of the Slack Channel in Pain and Itch Sensing 18.6 The Possible Role of Slack Channel in FMRP Syndrome 18.7 The Basic Role of the Potassium Channel in Controlling Neuron Excitability 18.8 The Potential Roles of Slack Channel in Auditory Signal Transduction 18.9 The Role of KCNT1 Channel Mutations in Epilepsy 18.10 The Pharmacological Properties of the KCNT1 Channel and Potential Drugs for the Treatment of Epilepsy That Are Associate... 18.11 Conclusive Remarks References Chapter 19: Ion Channels in Anesthesia 19.1 GABAA Receptor 19.2 Cholinergic Receptor 19.3 Glutamate Receptor 19.4 Two-Pore-Domain Background K+ Channel 19.5 Conclusion References