دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Pham Loi Vu (Author)
سری:
ISBN (شابک) : 9780429328459, 9780367334895
ناشر: Chapman and Hall/CRC
سال نشر: 2019
تعداد صفحات: 415
زبان:
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مسائل پراکندگی معکوس و کاربرد آنها در معادلات غیرخطی انتگرال پذیر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مسائل پراکندگی معکوس و کاربرد آنها در معادلات غیرخطی انتگرال پذیر به مسائل پراکندگی معکوس (ISP) برای معادلات دیفرانسیل و کاربرد آنها در معادلات تکامل غیرخطی (NLEE) اختصاص دارد. این کتاب برای کسانی مناسب است که پیشینه ریاضی و علاقه به تجزیه و تحلیل تابعی، معادلات دیفرانسیل جزئی، معادلات فیزیک ریاضی و توابع یک متغیر مختلط دارند. این کتاب برای جامعه وسیعی در نظر گرفته شده است که با مسائل پراکندگی معکوس و کاربردهای آنها کار می کنند. به ویژه، یک جامعه سنتی در فیزیک ریاضی وجود دارد.
در این تک نگاری، مسائل به صورت گام به گام حل می شوند و برای سهولت دسترسی بیشتر به موضوعات، شواهد دقیقی برای مسائل ارائه می شود. برای دانشآموزانی که برای اولین بار به آنها نزدیک میشوند.
ویژگیها
• حلپذیری منحصربهفرد ISPها ثابت شده است. داده های پراکندگی مسائل پراکندگی معکوس در نظر گرفته شده (ISP) به طور کامل توضیح داده شده است.
• حل مسئله مقدار اولیه مرتبط یا مسئله مقدار مرزی اولیه برای معادلات تکامل غیرخطی (NLEE) انجام شده است. گام به گام. یعنی NLEE را می توان به عنوان شرط سازگاری دو معادله خطی نوشت. مقادیر مرزی مجهول با کمک معادله Lax (تعمیم یافته) محاسبه می شوند و سپس داده های پراکندگی وابسته به زمان (SD) از شرایط اولیه و مرزی ساخته می شوند.
• پتانسیل ها از نظر SD وابسته به زمان به طور منحصربهفردی بازیابی میشوند، و راهحل NLEEها بهطور منحصربهفرد بر اساس راهحلهای یافت شده ISP بیان میشوند.
• از آنجایی که ISPهای در نظر گرفته شده به خوبی حل میشوند، پس SPهای تولید شده توسط دو معادله خطی، روش پراکندگی معکوس (ISM) را تشکیل می دهند. کاربرد ISM برای حل NLEE ها سازگار است و به طور موثر در طرح ISM جاسازی شده است.
Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations is devoted to inverse scattering problems (ISPs) for differential equations and their application to nonlinear evolution equations (NLEEs). The book is suitable for anyone who has a mathematical background and interest in functional analysis, partial differential equations, equations of mathematical physics, and functions of a complex variable. This book is intended for a wide community working with inverse scattering problems and their applications; in particular, there is a traditional community in mathematical physics.
In this monograph, the problems are solved step-by-step, and detailed proofs are given for the problems to make the topics more accessible for students who are approaching them for the first time.
Features
• The unique solvability of ISPs are proved. The scattering data of the considered inverse scattering problems (ISPs) are described completely.
• Solving the associated initial value problem or initial-boundary value problem for the nonlinear evolution equations (NLEEs) is carried out step-by-step. Namely, the NLEE can be written as the compatibility condition of two linear equations. The unknown boundary values are calculated with the help of the Lax (generalized) equation, and then the time-dependent scattering data (SD) are constructed from the initial and boundary conditions.
• The potentials are recovered uniquely in terms of time-dependent SD, and the solution of the NLEEs is expressed uniquely in terms of the found solutions of the ISP.
• Since the considered ISPs are solved well, then the SPs generated by two linear equations constitute the inverse scattering method (ISM). The application of the ISM to solving the NLEEs is consistent and is effectively embedded in the schema of the ISM.
Chapter 1: Inverse scattering problems for systems of rst-order ODEs on a half-line
Chapter 2: Some problems for a system of nonlinear evolution equations.on a half-line
Chapter 3: Some problems for cubic nonlinear evolution equations on a half-line
Chapter 4: The Dirichlet IBVPs for sine and sinh-Gordon equations
Chapter 5: Inverse scattering for integration of the continual system of nonlinear interaction waves
Chapter 6: Some problems for the KdV equation and associated inverse scattering
Chapter 7: Inverse scattering and its application to the KdV equation with dominant surface tension
Chapter 8: The inverse scattering problem for the perturbed string equation and its application to integration of the two-dimensional generalization from Korteweg-de Vries equation
Chapter 9: Connections between the inverse scattering method and related methods