دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Mathias Richter
سری: Lecture Notes in Geosystems Mathematics and Computing
ISBN (شابک) : 9783030593162, 3030593169
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 281
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 مگابایت
در صورت تبدیل فایل کتاب Inverse Problems: Basics, Theory and Applications in Geophysics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مسائل معکوس: مبانی، نظریه و کاربردها در ژئوفیزیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface of the First Edition Scope Content Acknowledgments Preface of the Second Edition Contents 1 Characterization of Inverse Problems 1.1 Examples of Inverse Problems 1.2 Ill-Posed Problems Definition and Practical Significance of Ill-Posedness Amendments to Definition 1.5 1.3 Model Problems for Inverse Gravimetry 1.4 Model Problems for Full-Waveform Seismic Inversion 2 Discretization of Inverse Problems 2.1 Approximation of Functions Approximation in One Space Dimension Approximation in Two Space Dimensions 2.2 Discretization of Linear Problems by Least Squares Methods Description of the Method Application to Model Problem 1.12: Linear Waveform Inversion Analysis of the Method 2.3 Discretization of Fredholm Equations by Collocation Methods Description of the Method Application to Model Problem 1.12: Linear Waveform Inversion Analysis of the Method 2.4 The Backus–Gilbert Method and the Approximative Inverse Description of the Backus–Gilbert Method Application to Model Problem 1.12: Linear Waveform Inversion Analysis of the Method The Approximative Inverse 2.5 Discrete Fourier Inversion of Convolutional Equations Description of the Method Application to Model Problem 1.10 of Inverse Gravimetry Analysis of the Method 2.6 Discretization of Nonlinear Inverse Gravimetry Multiscale Discretizations Further Reading 2.7 Discretization of Nonlinear Waveform Inversion Discretization of the Initial/Boundary-Value Problem Discretization of the Operator T Discrete Inverse Model Problem Further Reading 3 Regularization of Linear Inverse Problems 3.1 Linear Least Squares Problems 3.2 Sensitivity Analysis of Linear Least Squares Problems Matrices with Deficient Rank Generalized Least Squares Problems 3.3 The Concept of Regularization 3.4 Tikhonov Regularization Analysis of Problem 3.20 and Its Practical Solution Generalization of Tikhonov Regularization 3.5 Discrepancy Principle Random Data Perturbations Examples Other Heuristics to Determine Regularization Parameters 3.6 Reduction of Least Squares Regularization to Standard Form Summary 3.7 Regularization of the Backus–Gilbert Method 3.8 Regularization of Fourier Inversion Application to Linear Inverse Gravimetry 3.9 Landweber Iteration and the Curve of Steepest Descent 3.10 The Conjugate Gradient Method Conjugate Gradient Method for Linear Systems of Equations Conjugate Gradient Method for Linear Least Squares Problems 4 Regularization of Nonlinear Inverse Problems 4.1 Tikhonov Regularization of Nonlinear Problems 4.2 Nonlinear Least Squares Problems 4.3 Computation of Derivatives 4.4 Iterative Regularization 4.5 Solution of Model Problem for Nonlinear Inverse Gravimetry Reconstruction by Smoothing Regularization Reconstruction by Variation Diminishing Regularization Reconstruction by Iterative Regularization Further Reading 4.6 Solution of Model Problem for Nonlinear Waveform Inversion Specification of an Example Case for Waveform Inversion Further Reading A Results from Linear Algebra A.1 The Singular Value Decomposition (SVD) B Function Spaces B.1 Linear Spaces B.2 Operators B.3 Normed Spaces B.4 Inner Product Spaces B.5 Convexity, Best Approximation C The Fourier Transform C.1 One-Dimensional Discrete Fourier Transform C.2 Discrete Fourier Transform for Non-equidistant Samples C.3 Error Estimates for Fourier Inversion in Sect.2.5 D Regularization Property of CGNE E Existence and Uniqueness Theorems for Waveform Inversion E.1 Wave Equation with Constant Coefficient E.2 Identifiability of Acoustic Impedance References Index