ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications ()

دانلود کتاب پیشرفت های منطق فازی شهودی و نوع 2 در الگوریتم های عصبی و بهینه سازی: نظریه و کاربردها ()

Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications ()

مشخصات کتاب

Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications ()

ویرایش: [1 ed.] 
نویسندگان: , ,   
سری: Studies in Computational Intelligence 
ISBN (شابک) : 303035444X, 9783030354442 
ناشر: Springer 
سال نشر: 2020 
تعداد صفحات: 808
[767] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 31 Mb 

قیمت کتاب (تومان) : 43,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications () به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب پیشرفت های منطق فازی شهودی و نوع 2 در الگوریتم های عصبی و بهینه سازی: نظریه و کاربردها () نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب پیشرفت های منطق فازی شهودی و نوع 2 در الگوریتم های عصبی و بهینه سازی: نظریه و کاربردها ()

این کتاب آخرین پیشرفت‌ها در منطق فازی، شبکه‌های عصبی و الگوریتم‌های بهینه‌سازی و همچنین ترکیبات هوشمند ترکیبی آنها و کاربردهای آن‌ها در زمینه‌هایی مانند کنترل هوشمند، رباتیک، تشخیص الگو، تشخیص پزشکی، پیش‌بینی سری‌های زمانی و بهینه‌سازی را شرح می‌دهد. . این موضوع بسیار مرتبط است زیرا اکثر سیستم‌ها و دستگاه‌های هوشمند فعلی از نوعی ویژگی هوشمند برای بهبود عملکرد خود استفاده می‌کنند. این کتاب همچنین مدل‌ها و الگوریتم‌های جدید و پیشرفته‌ای از منطق فازی نوع ۲ و سیستم‌های فازی شهودی را ارائه می‌کند که مورد توجه محققان این حوزه‌ها است. علاوه بر این، الگوریتم‌های بهینه‌سازی جدید و الهام‌گرفته از طبیعت و مدل‌های عصبی نوآورانه را پیشنهاد می‌کند. این کتاب با مشارکت در جنبه های نظری و همچنین برنامه های کاربردی، مخاطبان گسترده ای را به خود جلب می کند.


توضیحاتی درمورد کتاب به خارجی

This book describes the latest advances in fuzzy logic, neural networks, and optimization algorithms, as well as their hybrid intelligent combinations, and their applications in the areas such as intelligent control, robotics, pattern recognition, medical diagnosis, time series prediction, and optimization. The topic is highly relevant as most current intelligent systems and devices use some form of intelligent feature to enhance their performance. The book also presents new and advanced models and algorithms of type-2 fuzzy logic and intuitionistic fuzzy systems, which are of great interest to researchers in these areas. Further, it proposes novel, nature-inspired optimization algorithms and innovative neural models. Featuring contributions on theoretical aspects as well as applications, the book appeals to a wide audience.



فهرست مطالب

Preface
Contents
Type-1 and Type-2 Fuzzy Logic
Parameter Adaptation in the Imperialist Competitive Algorithm Using Generalized Type-2 Fuzzy Logic
	1 Introduction
	2 Imperialist Competitive Algorithm
	3 Proposal Methodology
	4 Benchmark Mathematical Functions and the Experimental Results
	5 Conclusions
	References
Applying Fuzzy Logic to Identify Heterogeneity of the Allometric  Response in Arithmetical Space
	1 Introduction
	2 Methods
		2.1 Data
		2.2 Notions of Fuzzy Set Theory
		2.3 Mamdani Fuzzy Inference System (MFIS)
		2.4 Fuzzy Identification of the Allometric Model
	3 Results
	4 Discussion
	5 Conclusion
	References
Fireworks Algorithm (FWA) with Adaptation of Parameters Using Interval Type-2 Fuzzy Logic System
	1 Introduction
	2 Fireworks Algorithm (FWA)
	3 Fuzzy Fireworks Algorithm (FFWA)
	4 Proposed Method (IT2FFWA)
	5 Benchmark Functions
	6 Experiments and Results
	7 Conclusions
	References
Omnidirectional Four Wheel Mobile Robot Control with a Type-2 Fuzzy  Logic Behavior-Based Strategy
	1 Introduction
	2 Kinematic Model
		2.1 Kinematic Behavior
		2.2 Kinematic Model
	3 Interval Type-2 Fuzzy Systems
	4 Results and Discussion
	5 Conclusions
	References
Optimization for Type-1 and Interval Type-2 Fuzzy Systems for the Classification of Blood Pressure Load Using Genetic Algorithms
	1 Introduction
	2 Methodology
		2.1 Blood Pressure Load
	3 Optimization of Type-1 and Type-2 Fuzzy System for the Classification of Blood Pressure Load
	4 Results
	5 Conclusions
	References
Intuitionistic Fuzzy Logic
Interval Valued Intuitionistic Fuzzy Evaluations for Analysis of Students’ Knowledge
	1 Introduction
	2 Proposed Assessment Model
		2.1 Determination of the Students’ Assessments of the Different Units for a Discipline
		2.2 Determine of the Final Mark for the ith Student for the tth Discipline
		2.3 Determine of Interval Valued Intuitionistic Fuzzy Evaluation of a Student for All Disciplines
	3 Conclusion
	References
Generalized Net Model of the Network for Automatic Turning and Setting the Lighting in the Room with Intuitionistic Fuzzy Estimations
	1 Introduction
	2 GN Model
	3 Conclusion
	References
Generalized Net Model of Common Internet Payment Gateway with Intuitionistic Fuzzy Estimations
	1 Introduction
	2 Common Internet Payment Gateway
	3 GN Model
	4 Conclusion
	References
Intuitionistic Fuzzy Neural Networks with Interval Valued Intuitionistic Fuzzy Conditions
	1 Introduction
	2 Preliminary Remarks
	3 Definition of an Intuitionistic Fuzzy Neural Networks with Interval Valued Intuitionistic Fuzzy Conditions
	4 Conclusion
	References
Generalised Atanassov Intuitionistic Fuzzy Sets Are Actually Intuitionistic Fuzzy Sets
	1 Introduction
	2 Preliminaries
	3 Main Result
	4 Conclusion
	References
The Numerical Solution of Intuitionistic Fuzzy Differential Equations by the Third Order Runge-Kutta Nyström Method
	1 Introduction
	2 Preliminaries
	3 Intuitionistic Fuzzy Cauchy Problem
	4 Third-Order Runge-Kutta Nyström Method
	5 Example
	6 Conclusion
	References
Intuitionistic Fuzzy Linear Systems
	1 Introduction
	2 Preliminaries
	3 Intuitionistic Fuzzy Linear System
	4 Examples
	5 Conclusion
	References
Nonlocal Intuitionistic Fuzzy Differential Equation
	1 Introduction
	2 Preliminaries
	3 Nonlocal Intuitionistic Fuzzy Differential Equation
	4 Continuous Dependence of Mild Solution of Intuitionistic Fuzzy Differential Equation
	References
Metaheuristics: Theory and Applications
Harmony Search with Dynamic Adaptation of Parameters for the Optimization of a Benchmark Controller
	1 Introduction
	2 Harmony Search Algorithm
		2.1 Pseudocode for Harmony Search
	3 Proposed Method
	4 Methodology for Parameter Adaptation
	5 Simulation Results and Study Case
		5.1 Study Case
		5.2 Simulations Results
	6 Conclusions
	References
Evaluation of Parallel Exploration and Exploitation Capabilities in Two PSO Variants with Intra Communication
	1 Introduction
	2 Particle Swarm Optimization (PSO)
	3 Experimental Results
		3.1 Experimental Results with PSO
	4 Statistical Test
	5 Conclusions
	References
Chemical Reaction Algorithm to Control Problems
	1 Introduction
	2 The Chemical Optimization Paradigm
		2.1 Type 1: Combination Reactions
		2.2 Type 2: Decomposition Reactions
		2.3 Type 3: Substitution Reactions
		2.4 Type 4: Double-Substitution Reactions
	3 Methodology
	4 Simulation Results
	5 Conclusions
	References
AMOSA with Analytical Tuning Parameters and Fuzzy Logic Controller for Heterogeneous Computing Scheduling Problem
	1 Introduction
	2 Problem Description
	3 Simulated Annealing
	4 Multi-objective Simulated Annealing
		4.1 AMOSA
		4.2 AMOSA with Fuzzy Logic Controller
	5 Computational Experiments
	6 Conclusions and Future Work
	References
Medical Applications
A Modular Neural Network Approach for Cardiac Arrhythmia Classification
	1 Introduction
	2 Problem Statement and Proposed Method
	3 Important Concept Review
		3.1 Multi-layer Perceptron
		3.2 Autoregressive Models, Shannon Entropy and Multifractal Analysis Wavelets
	4 Experiments
		4.1 PTB Diagnostic ECG Database
		4.2 Results
	5 Conclusions
	References
Particle Swarm Optimization of Modular Neural Networks for Obtaining the Trend of Blood Pressure
	1 Introduction
	2 Literature Review
		2.1 Particle Swarm Optimization
		2.2 Blood Pressure and Hypertension
	3 Methodology
	4 Results and Discussion
	5 Conclusions and Future Work
	References
Classification of X-Ray Images for Pneumonia Detection Using Texture Features and Neural Networks
	1 Introduction
	2 Overview of Chest X-ray Disease Detection Methods
	3 Basic Concepts and Theory
		3.1 Chest X-ray
		3.2 Artificial Neural Networks
		3.3 Feature Extraction
		3.4 Gray Level Co-occurrence Matrix
		3.5 Features Based on Image Texture
	4 Working with Chest X-ray Images
	5 Proposed Method
	6 Experimental Results
		6.1 Preprocessing a Region of Interest for Chest X-rays
		6.2 Gray Co-occurrence Matrix Offset
		6.3 Texture Feature Extraction
		6.4 Neural Network Arquitecture
		6.5 Classification Results
	7 Conclusions and Future Work
	References
Segmentation and Classification of Noisy Thermographic Images as an Aid for Identifying Risk Levels of Breast Cancer
	1 Introduction
	2 Related Work
	3 Materials and Methods
		3.1 Acquisition of the Images
		3.2 Selection and Pre-processing of Images
		3.3 Automatic Segmentation
		3.4 Selection of Features
		3.5 Design of the Classifier
	4 Results
		4.1 Evaluation of Automatic Segmentation
		4.2 Evaluation of Classification
	5 Conclusions and Future Work
	References
Robotic Applications
Acceleration of Path Planning Computation Based on Evolutionary Artificial Potential Field for Non-static Environments
	1 Introduction
	2 Path Planning Problem Formulation
	3 Artificial Potential Field Method
	4 Evolutionary Artificial Potential Field Algorithm
	5 Parallel Evolutionary Artificial Potential Field Algorithm
	6 Mobile Robot Path-Planning Algorithm Based on EAPF for Non-static Environments
	7 Experiments and Results
		7.1 Offline Path Planning
		7.2 Online Path Planning Considering New Static Obstacles
		7.3 Online Path Planning Considering New Dynamic Obstacles
	8 Conclusions
	References
Multi-objective Evaluation of Deep Learning Based Semantic Segmentation for Autonomous Driving Systems
	1 Introduction
	2 Related Work
	3 Fully Convolutional Networks
		3.1 FCN-Alexnet
		3.2 FCN-8s
		3.3 SegNet
	4 Methodology
	5 Experiments and Results
		5.1 Experimental Setting
		5.2 Experimental Results
	6 Conclusions
	References
Towards Tracking Trajectory of Planar Quadrotor Models
	1 Introduction
	2 Dynamics of Planar Quadrotor
	3 Design and Implementation of Control System
	4 Experimental Results
	5 Conclusions and Future Works
	References
Autonomous Garage Parking of a Car-Like Robot Using a Fuzzy  PD + I Controller
	1 Introduction
	2 Kinematic Model of a Car-like Robot
	3 Path Planning for Garage Parking
	4 Fuzzy Inference System
	5 Control Strategy
	6 Results
	7 Conclusions
	References
Analysis of P, PI, Fuzzy and Fuzzy PI Controllers for Control Position in Omnidirectional Robots
	1 Introduction
	2 Kinematics of Omnidirectional Robot
	3 Control Schemes
	4 Implementation of Control Schemes
	5 Results
	6 Conclusions
	References
Fuzzy Logic Controller with Fuzzylab Python Library and the Robot Operating System for Autonomous Robot Navigation: A Practical Approach
	1 Introduction
		1.1 Many-Valued Logic
		1.2 Linear and Nonlinear Systems
		1.3 Fuzzy Logic
	2 TurtleBot3 Robot and Robot Operating System
		2.1 Robot Operating System
		2.2 TurtleBot3 Mobile Robot
	3 Design of the Fuzzy Logic Controller
		3.1 Creating the FIS of the FLC
		3.2 The Fuzzy Logic Controller
	4 Experiments and Results
	5 Conclusions and Future Research
	References
Neural Networks Applications
Neural Evolutionary Predictive Control for Linear Induction Motors with Experimental Data
	1 Introduction
	2 Neural Model
	3 Particle Swarm Optimization
	4 Neural Evolutionary Predictive Control
	5 Experimental Results
		5.1 Linear Induction Motor Model
		5.2 Linear Induction Motor Prototype
		5.3 RHONN as N-Step Ahead Predictor
		5.4 Real-Time Implementation Results
	6 Conclusions
	References
Filter Size Optimization on a Convolutional Neural Network Using FGSA
	1 Introduction
	2 Literature Review
		2.1 Convolutional Neural Networks
		2.2 GSA
		2.3 FGSA
	3 Proposed Method
	4 Results and Discussion
	5 Conclusions
	References
Evaluation and Analysis of Performances of Different Heuristics for Optimal Tuning Learning on Mamdani Based Neuro-Fuzzy System
	1 Introduction
		1.1 Learning Rate as a Critical Hyperparameter
		1.2 Gradient Descent and Adaptive Learning Rate
		1.3 Heuristics for Optimal Learning Rate
		1.4 Gradient Descent with Momentum and Adaptive Learning Rate (GDX)
		1.5 Momentum Method to Update Design Parameters
	2 Annealing the Learning Rate
		2.1 Experiments Description
		2.2 Results and Discussions
		2.3 Conclusions
	References
Direct and Indirect Evolutionary Designs of Artificial Neural Networks
	1 Introduction
	2 Background
		2.1 Artificial Neural Networks
		2.2 Differential Evolution
		2.3 Grammatical Evolution
	3 Design Methodologies
		3.1 Design Methodology with Direct Codification
		3.2 Design Methodology with Indirect Codification
	4 Experiments and Results
	5 Conclusions and Future Work
	References
Studying Grammatical Evolution\'s Mapping Processes for Symbolic Regression Problems
	1 Introduction
	2 Grammatical Evolution
		2.1 BNF-Grammar
		2.2 Search Engine
		2.3 Mapping Process
	3 Symbolic Regression Problem
	4 Experimental Setup
	5 Results
	6 Conclusions and Future Work
	References
Optimization and Evolutionary Algorithms
A Survey of Hyper-heuristics for Dynamic Optimization Problems
	1 Introduction
	2 Background
		2.1 Dynamic Optimization Problem
		2.2 Adaptation of Heuristic to Problem Changes
		2.3 Hyper-heuristic
		2.4 Classification of Hyper-heuristics
	3 Dynamic Hyper-heuristics with Problem-Specific Low-Level Heuristics
	4 Metaheuristics as Low-Level Heuristics
	5 Discussion and Future Research Areas
		5.1 Generation Hyper-heuristics on Non-job-Shop Problems
		5.2 Solving Dynamic Multi-objective Optimization Problems
		5.3 Complexity of Low-Level Heuristics
		5.4 Fitness Landscape Analysis
	6 Conclusions
	References
The Dynamic Portfolio Selection Problem: Complexity, Algorithms and Empirical Analysis
	1 Introduction
	2 State of the Art
	3 Project Portfolio Selection Problems
		3.1 Dynamic Project Portfolio Selection Problem
		3.2 NP-Hard Subproblems
		3.3 Demonstration of PPS Complexity
		3.4 Solution Algorithms
	4 Experimentation and Result
		4.1 Results
	5 Conclusions and Future Work
	References
A Novel Dynamic Multi-objective Evolutionary Algorithm with an Adaptable Roulette for the Selection of Operators
	1 Introduction
	2 Dynamic Multi-objective Optimization Problem Definitions
	3 Dynamic Multi-objective Evolutionary Algorithm with an Adaptable Roulette for the Selection of Operators
		3.1 Main Algorithm
		3.2 Roulette Update Scheme
	4 Algorithms in the Comparison
		4.1 DNSGA-II
		4.2 Differential Evolution
	5 Experimental Setup
	6 Results
	7 Conclusions and Future Work
	References
Combinatorial Designs on Constraint Satisfaction Problem (VRP)
	1 Introduction
	2 Concepts
		2.1 Constraint Satisfaction Problems
		2.2 Combinatorial Design
		2.3 Vehicle Routing Problem
	3 Proposed Design Methodology
		3.1 Phase I
		3.2 Phase II
		3.3 Phase III
		3.4 Heuristics K-Opt
		3.5 Initial Solution
		3.6 Metaheuristics
	4 Experiments and Results
		4.1 Test Instances
		4.2 Experimental Design
	5 Conclusions and Future Work
	References
Comparative Analysis of Multi-objective Metaheuristic Algorithms by Means of Performance Metrics to Continuous Problems
	1 Introduction
	2 Background
		2.1 Multi-objective Algorithms
		2.2 Pareto Front Metrics
		2.3 CEC 2009 Competition
		2.4 Statistical Test
		2.5 JMetal
	3 Methodology
	4 Experiments and Results
	5 Conclusions and Future Work
	References
Intelligent Agents
Towards an Agent-Based Model for the Analysis of Macroeconomic Signals
	1 Introduction
	2 The BAM Model
		2.1 Overview
		2.2 Design Concepts
		2.3 Details
	3 Implementation
	4 Results
	5 Conclusion and Future Work
	References
Fuzzy Worlds and the Quest for Modeling Complex-Adaptive  Systems
	1 Introduction
	2 Complex Systems
		2.1 The Footprint of Complexity
		2.2 Levels of Analysis
		2.3 Complex-Adaptive Systems
	3 Complex Models for Complex Adaptive Systems
		3.1 Types of Complex Systems and Their Modeles
		3.2 Modeling Complex-Adaptive Systems
	4 Fuzzy Worlds
	References
Procedural Generation of Levels  for the Angry Birds Videogame  Using Evolutionary Computation
	1 Introduction
	2 Background
		2.1 Procedural Content Generation
		2.2 Genetic Algorithm
		2.3 Open-Ended Evolution
	3 Overview of Existing Work
	4 Current Approach
	5 Conclusions and Future Work
	References
A Multi-agent Environment Acting as a Personal Tourist Guide
	1 Introduction
	2 The Related Works
	3 General Review of the Tourist Guide
	4 The Tourist Guide Architecture
	5 CHH OntoNet
	6 CHH AmbiNet
	7 Conclusion
	References
Pattern Recognition
Comparing Evolutionary Artificial Neural Networks from Second and Third Generations for Solving Supervised Classification Problems
	1 Introduction
	2 Background
		2.1 Artificial Neural Networks
		2.2 Evolutionary Algorithms
		2.3 Evolutionary Artificial Neural Networks
	3 Methodology
		3.1 Second-Generation: Multilayer Perceptron
		3.2 Third-Generation: Spike Response Model
		3.3 Grammatical Evolution
	4 Experiments and Results
		4.1 Statistical Tests
	5 Conclusions and Future Work
	References
Gegenbauer-Based Image Descriptors for Visual Scene Recognition
	1 Introduction
	2 Theoretical Background and Proposal
		2.1 Gegenbauer Polynomials
		2.2 Gegenbauer Polynomials-Based Image Moments
		2.3 Invariants of Gegenbauer-Based Moments
		2.4 Gegenbauer Polynomials-Based Image Descriptors
	3 Experimental Methodology
		3.1 Key-Point and ROI Extraction
		3.2 Construction of the Descriptors
		3.3 Experimental Evaluation
	4 Results and Discussion
	5 Conclusions and Future Work
	References
Bimodal Biometrics Using EEG-Voice Fusion at Score Level Based on Hidden Markov Models
	1 Introduction
	2 Proposed Method
	3 Experimental Results
	4 Conclusions
	References
Towards a Quantitative Identification of Mobile Social Media UIDPs’ Visual Features Using a Combination of Digital Image Processing and Machine Learning Techniques
	1 Introduction
	2 State-of-the-Art
	3 Classification of Mobile Social Media Apps
	4 UIDPs Identified in Social Media Apps
	5 Materials and Methods
		5.1 Decision Trees
		5.2 Methodology
		5.3 Results and Discussion
	6 Conclusions and Future Work
	References
Fuzzy Modular Neural Model for Blinking Coding Detection and Classification for Linguistic Expression Recognition
	1 Introduction
	2 General Description of the System
	3 Data Acquisition
	4 Signal Conditioning
	5 Mamdani Fuzzy Event Detection System
	6 Mamdani Fuzzy Event Detection System
		6.1 Feature Extraction
		6.2 Modular Neural Network Design
	7 Results and Conclusions
	References
Hybrid Intelligent Systems
A Genetic Algorithm Based Approach for Word Sense Disambiguation Using Fuzzy WordNet Graphs
	1 Introduction
	2 Proposed Work
	3 Results and Discussion
	4 Conclusion
	References
Configuration Module for Treating Design Anomalies in Databases for a Natural Language Interface to Databases
	1 Introduction
	2 Database Design Anomalies
	3 Configuration Module
		3.1 Treating the Absence of Primary and Foreign Keys
		3.2 Treating the Use of Surrogate Keys
		3.3 Treating Columns for Storing Aggregate Function Calculations
		3.4 Treating Repeated Columns in Two or More Tables
	4 Experimental Results
	5 Final Remarks
	References
Development of a Virtual View for Processing Complex Natural Language Queries
	1 Introduction
	2 Complex Queries
	3 Processing Complex Queries in the NLIDB
	4 Implementation of a Virtual View
	5 Experimental Results
	6 Conclusions
	References
Automated Ontology Extraction from Unstructured Texts using Deep Learning
	1 Introduction
	2 Background
		2.1 Word Representation
		2.2 Deep Learning
	3 Related Work
		3.1 Semantic Relation Classification
		3.2 Automated Ontology Construction
	4 Ontology Learning Methodology using Deep Learning Techniques
		4.1 Model Training for Semantic Relations Detection  in a Generic Model
		4.2 Training the Semantic Relation Classification Model
		4.3 Domain Adaptation
		4.4 Inference of Semantic Relations in the Specific Domain Application
		4.5 Specialized Domain Semantic Relation Dataset Building
	5 Study Case: Ontology of the Object-Oriented Paradigm
		5.1 Domain Adaptation
		5.2 Inference of Semantic Relations in the Specific Domain Application
		5.3 Evaluation of Extracted Terms and Relations
	6 Results and Discussion
	7 Conclusions and Future Work
	References
Implementation of a Multicriteria Analysis Model to Determine Anthropometric Characteristics of an Optimal Helmet of an Italian Scooter
	1 Introduction
	2 Methodology Applied
	3 Results of Our Multivariable Analysis
	4 Conclusions and Future Research
	References
Improving Segmentation of Liver Tumors Using Deep Learning
	1 Introduction
	2 Methods
		2.1 Preprocessing
		2.2 Network Architecture
		2.3 Post-processing
		2.4 Validation of Group of Instances
	3 Results
	4 Conclusions
	References
Intuitionistic Fuzzy Sugeno Integral for Face Recognition
	1 Introduction
	2 Sugeno Measures and Fuzzy Integrals
		2.1 Monotonic Measures
		2.2 Sugeno Measures
		2.3 Sugeno Integrals
	3 Extension of the Sugeno Integral with Intuitionistic Fuzzy Sets
		3.1 Intuitionistic Fuzzy Set
		3.2 Sugeno Integral with Intuitionistic Fuzzy Set
		3.3 Intuitionistic Fuzzy Sugeno Integral Using πA = 0.4
	4 Sugeno Integral with Intuitionistic Fuzzy Sets in a Modular Neural Network
		4.1 The Cropped Yale Database
		4.2 Modular Neural Network (MNN)
		4.3 Training Parameters
	5 Simulation Results
	6 Conclusion
	References




نظرات کاربران