ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Introductury Econometrics: A Modern Approach

دانلود کتاب اقتصاد سنجی مقدماتی: رویکردی مدرن

Introductury Econometrics: A Modern Approach

مشخصات کتاب

Introductury Econometrics: A Modern Approach

ویرایش: [7 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 9781337558860 
ناشر: Cengage 
سال نشر: 2018 
تعداد صفحات: 816
[849] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 16 Mb 

قیمت کتاب (تومان) : 39,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 6


در صورت تبدیل فایل کتاب Introductury Econometrics: A Modern Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اقتصاد سنجی مقدماتی: رویکردی مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب اقتصاد سنجی مقدماتی: رویکردی مدرن

با اقتصاد مقدماتی Wooldridge: A MODERN Approach، 7E، درک درستی از اینکه چگونه اقتصادسنجی می تواند به سؤالات امروز در تجارت، ارزیابی سیاست و پیش بینی پاسخ دهد، به دست آورید. رویکرد عملی و در عین حال حرفه‌ای این نسخه نشان می‌دهد که چگونه اقتصاد سنجی از مجموعه‌ای از ابزارهای انتزاعی فراتر رفته و برای پاسخ دادن به سؤالات در رشته‌های مختلف مفید واقع شده است. اطلاعات بر اساس نوع داده های مورد تجزیه و تحلیل سازماندهی می شود، با استفاده از یک رویکرد سیستماتیک که تنها مفروضات مورد نیاز را معرفی می کند. این امر درک مطالب را آسان‌تر می‌کند و در نهایت منجر به شیوه‌های اقتصاد سنجی بهتر می‌شود. این نسخه با برنامه های کاربردی مرتبط، بیش از 100 مجموعه داده جذاب در قالب های مختلف را در خود جای داده است. به‌روزرسانی‌ها، آخرین پیشرفت‌ها را در این زمینه، از جمله پیشرفت‌های اخیر در ادبیات به‌اصطلاح «اثرات علّی» یا «اثرات درمان»، برای درک تأثیر و اهمیت اقتصاد سنجی امروز معرفی می‌کنند. توجه مهم: محتوای رسانه‌ای که در توضیحات محصول یا متن محصول ارجاع شده است ممکن است در نسخه کتاب الکترونیکی موجود نباشد.


توضیحاتی درمورد کتاب به خارجی

Gain an understanding of how econometrics can answer today's questions in business, policy evaluation and forecasting with Wooldridge's INTRODUCTORY ECONOMETRICS: A MODERN APPROACH, 7E. This edition's practical, yet professional, approach demonstrates how econometrics has moved beyond a set of abstract tools to become genuinely useful for answering questions across a variety of disciplines. Information is organized around the type of data being analyzed, using a systematic approach that only introduces assumptions as they are needed. This makes the material easier to understand and, ultimately, leads to better econometric practices. Packed with relevant applications, this edition incorporates more than 100 intriguing data sets in different formats. Updates introduce the latest developments in the field, including recent advances in the so-called “causal effects” or “treatment effects” literature, for an understanding of the impact and importance of econometrics today. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.



فهرست مطالب

Brief Contents
Contents
Chapter 1: The Nature of Econometrics and Economic Data
	1-1 What Is Econometrics?
	1-2 Steps in Empirical Economic Analysis
	1-3 The Structure of Economic Data
		1-3a Cross-Sectional Data
		1-3b Time Series Data
		1-3c Pooled Cross Sections
		1-3d Panel or Longitudinal Data
		1-3e A Comment on Data Structures
	1-4 Causality, Ceteris Paribus, and Counterfactual Reasoning
	Summary
	Key Terms
	Problems
	Computer Exercises
Part 1: Regression Analysis with ­Cross-Sectional Data
	Chapter 2: The Simple Regression Model
		2-1 Definition of the Simple Regression Model
		2-2 Deriving the Ordinary Least Squares Estimates
			2-2a A Note on Terminology
		2-3 Properties of OLS on Any Sample of Data
			2-3a Fitted Values and Residuals
			2-3b Algebraic Properties of OLS Statistics
			2-3c Goodness-of-Fit
		2-4 Units of Measurement and Functional Form
			2-4a The Effects of Changing Units of Measurement on OLS Statistics
			2-4b Incorporating Nonlinearities in Simple Regression
			2-4c The Meaning of “Linear” Regression
		2-5 Expected Values and Variances of the OLS Estimators
			2-5a Unbiasedness of OLS
			2-5b Variances of the OLS Estimators
			2-5c Estimating the Error Variance
		2-6 Regression through the Origin and Regression on a Constant
		2-7 Regression on a Binary Explanatory Variable
			2-7a Counterfactual Outcomes, Causality, and Policy Analysis
		Summary
		Key Terms
		Problems
		Computer Exercises
	Chapter 3: Multiple Regression Analysis: Estimation
		3-1 Motivation for Multiple Regression
			3-1a The Model with Two Independent Variables
			3-1b The Model with k Independent Variables
		3-2 Mechanics and Interpretation of Ordinary Least Squares
			3-2a Obtaining the OLS Estimates
			3-2b Interpreting the OLS Regression Equation
			3-2c On the Meaning of “Holding Other Factors Fixed” in Multiple Regression
			3-2d Changing More Than One Independent Variable Simultaneously
			3-2e OLS Fitted Values and Residuals
			3-2f A “Partialling Out” Interpretation of Multiple Regression
			3-2g Comparison of Simple and Multiple Regression Estimates
			3-2h Goodness-of-Fit
			3-2i Regression through the Origin
		3-3 The Expected Value of the OLS Estimators
			3-3a Including Irrelevant Variables in a Regression Model
			3-3b Omitted Variable Bias: The Simple Case
			3-3c Omitted Variable Bias: More General Cases
		3-4 The Variance of the OLS Estimators
			3-4a The Components of the OLS Variances: Multicollinearity
			3-4b Variances in Misspecified Models
			3-4c Estimating s2: Standard Errors of the OLS Estimators
		3-5 Efficiency of OLS: The Gauss-Markov Theorem
		3-6 Some Comments on the Language of Multiple Regression Analysis
		3-7 Several Scenarios for Applying Multiple Regression
			3-7a Prediction
			3-7b Efficient Markets
			3-7c Measuring the Tradeoff between Two Variables
			3-7d Testing for Ceteris Paribus Group Differences
			3-7e Potential Outcomes, Treatment Effects, and Policy Analysis
		Summary
		Key Terms
		Problems
		Computer Exercises
	Chapter 4: Multiple Regression Analysis: Inference
		4-1 Sampling Distributions of the OLS Estimators
		4-2 Testing Hypotheses about a Single Population Parameter: The t Test
			4-2a Testing against One-Sided Alternatives
			4-2b Two-Sided Alternatives
			4-2c Testing Other Hypotheses about bj
			4-2d Computing p-Values for t Tests
			4-2e A Reminder on the Language of Classical Hypothesis Testing
			4-2f Economic, or Practical, versus Statistical Significance
		4-3 Confidence Intervals
		4-4 Testing Hypotheses about a Single Linear Combination of the Parameters
		4-5 Testing Multiple Linear Restrictions: The F Test
			4-5a Testing Exclusion Restrictions
			4-5b Relationship between F and t Statistics
			4-5c The R-Squared Form of the F Statistic
			4-5d Computing p-values for F Tests
			4-5e The F Statistic for Overall Significance of a Regression
			4-5f Testing General Linear Restrictions
		4-6 Reporting Regression Results
		4-7 Revisiting Causal Effects and Policy Analysis
		Summary
		Key Terms
		Problems
		Computer Exercises
	Chapter 5: Multiple Regression Analysis: OLS Asymptotics
		5-1 Consistency
			5-1a Deriving the Inconsistency in OLS
		5-2 Asymptotic Normality and Large Sample Inference
			5-2a Other Large Sample Tests: The Lagrange Multiplier Statistic
		5-3 Asymptotic Efficiency of OLS
		Summary
		Key Terms
		Problems
		Computer Exercises
	Chapter 6: Multiple Regression Analysis: Further Issues
		6-1 Effects of Data Scaling on OLS Statistics
			6-1a Beta Coefficients
		6-2 More on Functional Form
			6-2a More on Using Logarithmic Functional Forms
			6-2b Models with Quadratics
			6-2c Models with Interaction Terms
			6-2d Computing Average Partial Effects
		6-3 More on Goodness-of-Fit and Selection of Regressors
			6-3a Adjusted R-Squared
			6-3b Using Adjusted R-Squared to Choose between Nonnested Models
			6-3c Controlling for Too Many Factors in Regression Analysis
			6-3d Adding Regressors to Reduce the Error Variance
		6-4 Prediction and Residual Analysis
			6.4 a Confidence Intervals for Predictions
			6-4b Residual Analysis
			6-4c Predicting y When log(y) Is the Dependent Variable
			6-4d Predicting y When the Dependent Variable Is log(y)
		Summary
		Key Terms
		Problems
		Computer Exercises
	Chapter 7: Multiple Regression Analysis with Qualitative Information
		7-1 Describing Qualitative Information
		7-2 A Single Dummy Independent Variable
			7-2a Interpreting Coefficients on Dummy Explanatory Variables When the Dependent Variable Is log(y)
		7-3 Using Dummy Variables for Multiple Categories
			7-3a Incorporating Ordinal Information by Using Dummy Variables
		7-4 Interactions Involving Dummy Variables
			7-4a Interactions among Dummy Variables
			7-4b Allowing for Different Slopes
			7-4c Testing for Differences in Regression Functions across Groups
		7-5 A Binary Dependent Variable: The Linear Probability Model
		7-6 More on Policy Analysis and Program Evaluation
			7-6a Program Evaluation and Unrestricted Regression Adjustment
		7-7 Interpreting Regression Results with Discrete Dependent Variables
		Summary
		Key Terms
		Problems
		Computer Exercises
	Chapter 8: Heteroskedasticity
		8-1 Consequences of Heteroskedasticity for OLS
		8-2 Heteroskedasticity-Robust Inference after OLS Estimation
			8-2a Computing Heteroskedasticity-Robust LM Tests
		8-3 Testing for Heteroskedasticity
			8-3a The White Test for Heteroskedasticity
		8-4 Weighted Least Squares Estimation
			8-4a The Heteroskedasticity Is Known up to a Multiplicative Constant
			8-4b The Heteroskedasticity Function Must Be Estimated: Feasible GLS
			8-4c What If the Assumed Heteroskedasticity Function Is Wrong?
			8-4d Prediction and Prediction Intervals with Heteroskedasticity
		8-5 The Linear Probability Model Revisited
		Summary
		Key Terms
		Problems
		Computer Exercises
	Chapter 9: More on Specification and Data Issues
		9-1 Functional Form Misspecification
			9-1a RESET as a General Test for Functional Form Misspecification
			9-1b Tests against Nonnested Alternatives
		9-2 Using Proxy Variables for Unobserved Explanatory Variables
			9-2a Using Lagged Dependent Variables as Proxy Variables
			9-2b A Different Slant on Multiple Regression
			9-2c Potential Outcomes and Proxy Variables
		9-3 Models with Random Slopes
		9-4 Properties of OLS under Measurement Error
			9-4a Measurement Error in the Dependent Variable
			9-4b Measurement Error in an Explanatory Variable
		9-5 Missing Data, Nonrandom Samples, and Outlying Observations
			9-5a Missing Data
			9-5b Nonrandom Samples
			9-5c Outliers and Influential Observations
		9-6 Least Absolute Deviations Estimation
		Summary
		Key Terms
		Problems
		Computer Exercises
Part 2: Regression Analysis with Time Series Data
	Chapter 10: Basic Regression Analysis with Time Series Data
		10-1 The Nature of Time Series Data
		10-2 Examples of Time Series Regression Models
			10-2a Static Models
			10-2b Finite Distributed Lag Models
			10-2c A Convention about the Time Index
		10-3 Finite Sample Properties of OLS under Classical Assumptions
			10-3a Unbiasedness of OLS
			10-3b The Variances of the OLS Estimators and the Gauss-Markov Theorem
			10-3c Inference under the Classical Linear Model Assumptions
		10-4 Functional Form, Dummy Variables, and Index Numbers
		10-5 Trends and Seasonality
			10-5a Characterizing Trending Time Series
			10-5b Using Trending Variables in Regression Analysis
			10-5c A Detrending Interpretation of Regressions with a Time Trend
			10-5d Computing R-Squared When the Dependent Variable Is Trending
			10-5e Seasonality
		Summary
		Key Terms
		Problems
		Computer Exercises
	Chapter 11: Further Issues in Using OLS with Time Series Data
		11-1 Stationary and Weakly Dependent Time Series
			11-1a Stationary and Nonstationary Time Series
			11-1b Weakly Dependent Time Series
		11-2 Asymptotic Properties of OLS
		11-3 Using Highly Persistent Time Series in Regression Analysis
			11-3a Highly Persistent Time Series
			11-3b Transformations on Highly Persistent Time Series
			11-3c Deciding Whether a Time Series Is I(1)
		11-4 Dynamically Complete Models and the Absence of Serial Correlation
		11-5 The Homoskedasticity Assumption for Time Series Models
		Summary
		Key Terms
		Problems
		Computer Exercises
	Chapter 12: Serial Correlation and Heteroskedasticity in Time Series Regressions
		12-1 Properties of OLS with Serially Correlated Errors
			12-1a Unbiasedness and Consistency
			12-1b Efficiency and Inference
			12-1c Goodness-of-Fit
			12-1d Serial Correlation in the Presence of Lagged Dependent Variables
		12-2 Serial Correlation–Robust Inference after OLS
		12-3 Testing for Serial Correlation
			12-3a A t Test for AR(1) Serial Correlation with Strictly Exogenous Regressors
			12-3b The Durbin-Watson Test under Classical Assumptions
			12-3c Testing for AR(1) Serial Correlation without Strictly Exogenous Regressors
			12-3d Testing for Higher-Order Serial Correlation
		12-4 Correcting for Serial Correlation with Strictly Exogenous Regressors
			12-4a Obtaining the Best Linear Unbiased Estimator in the AR(1) Model
			12-4b Feasible GLS Estimation with AR(1) Errors
			12-4c Comparing OLS and FGLS
			12-4d Correcting for Higher-Order Serial Correlation
			12-4e What if the Serial Correlation Model Is Wrong?
		12-5 Differencing and Serial Correlation
		12-6 Heteroskedasticity in Time Series Regressions
			12-6a Heteroskedasticity-Robust Statistics
			12-6b Testing for Heteroskedasticity
			12-6c Autoregressive Conditional Heteroskedasticity
			12-6d Heteroskedasticity and Serial Correlation in Regression Models
		Summary
		Key Terms
		Problems
		Computer Exercises
Part 3: Advanced Topics
	Chapter 13: Pooling Cross Sections across Time: Simple Panel Data Methods
		13-1 Pooling Independent Cross Sections across Time
			13-1a The Chow Test for Structural Change across Time
		13-2 Policy Analysis with Pooled Cross Sections
			13-2a Adding an Additional Control Group
			13-2b A General Framework for Policy Analysis with Pooled Cross Sections
		13-3 Two-Period Panel Data Analysis
			13-3a Organizing Panel Data
		13-4 Policy Analysis with Two-Period Panel Data
		13-5 Differencing with More Than Two Time Periods
			13-5a Potential Pitfalls in First Differencing Panel Data
		Summary
		Key Terms
		Problems
		Computer Exercises
	Chapter 14: Advanced Panel Data Methods
		14-1 Fixed Effects Estimation
			14-1a The Dummy Variable Regression
			14-1b Fixed Effects or First Differencing?
			14-1c Fixed Effects with Unbalanced Panels
		14-2 Random Effects Models
			14-2a Random Effects or Pooled OLS?
			14-2b Random Effects or Fixed Effects?
		14-3 The Correlated Random Effects Approach
			14-3a Unbalanced Panels
		14-4 General Policy Analysis with Panel Data
			14-4a Advanced Considerations with Policy Analysis
		14-5 Applying Panel Data Methods to Other Data Structures
		Summary
		Key Terms
		Problems
		Computer Exercises
	Chapter 15: Instrumental Variables Estimation and Two-Stage Least Squares
		15-1 Motivation: Omitted Variables in a Simple Regression Model
			15-1a Statistical Inference with the IV Estimator
			15-1b Properties of IV with a Poor Instrumental Variable
			15-1c Computing R-Squared after IV Estimation
		15-2 IV Estimation of the Multiple Regression Model
		15-3 Two-Stage Least Squares
			15-3a A Single Endogenous Explanatory Variable
			15-3b Multicollinearity and 2SLS
			15-3c Detecting Weak Instruments
			15-3d Multiple Endogenous Explanatory Variables
			15-3e Testing Multiple Hypotheses after 2SLS Estimation
		15-4 IV Solutions to Errors-in-Variables Problems
		15-5 Testing for Endogeneity and Testing Overidentifying Restrictions
			15-5a Testing for Endogeneity
			15-5b Testing Overidentification Restrictions
		15-6 2SLS with Heteroskedasticity
		15-7 Applying 2SLS to Time Series Equations
		15-8 Applying 2SLS to Pooled Cross Sections and Panel Data
		Summary
		Key Terms
		Problems
		Computer Exercises
	Chapter 16: Simultaneous Equations Models
		16-1 The Nature of Simultaneous Equations Models
		16-2 Simultaneity Bias in OLS
		16-3 Identifying and Estimating a Structural Equation
			16-3a Identification in a Two-Equation System
			16-3b Estimation by 2SLS
		16-4 Systems with More Than Two Equations
			16-4a Identification in Systems with Three or More Equations
			16-4b Estimation
		16-5 Simultaneous Equations Models with Time Series
		16-6 Simultaneous Equations Models with Panel Data
		Summary
		Key Terms
		Problems
		Computer Exercises
	Chapter 17: Limited Dependent Variable Models and Sample Selection Corrections
		17-1 Logit and Probit Models for Binary Response
			17-1a Specifying Logit and Probit Models
			17-1b Maximum Likelihood Estimation of Logit and Probit Models
			17-1c Testing Multiple Hypotheses
			17-1d Interpreting the Logit and Probit Estimates
		17-2 The Tobit Model for Corner Solution Responses
			17-2a Interpreting the Tobit Estimates
			17-2b Specification Issues in Tobit Models
		17-3 The Poisson Regression Model
		17-4 Censored and Truncated Regression Models
			17-4a Censored Regression Models
			17-4b Truncated Regression Models
		17-5 Sample Selection Corrections
			17-5a When Is OLS on the Selected Sample Consistent?
			17-5b Incidental Truncation
		Summary
		Key Terms
		Problems
		Computer Exercises
	Chapter 18: Advanced Time Series Topics
		18-1 Infinite Distributed Lag Models
			18-1a The Geometric (or Koyck) Distributed Lag Model
			18-1b Rational Distributed Lag Models
		18-2 Testing for Unit Roots
		18-3 Spurious Regression
		18-4 Cointegration and Error Correction Models
			18-4a Cointegration
			18-4b Error Correction Models
		18-5 Forecasting
			18-5a Types of Regression Models Used for Forecasting
			18-5b One-Step-Ahead Forecasting
			18-5c Comparing One-Step-Ahead Forecasts
			18-5d Multiple-Step-Ahead Forecasts
			18-5e Forecasting Trending, Seasonal, and Integrated Processes
		Summary
		Key Terms
		Problems
		Computer Exercises
	Chapter 19: Carrying Out an Empirical Project
		19-1 Posing a Question
		19-2 Literature Review
		19-3 Data Collection
			19-3a Deciding on the Appropriate Data Set
			19-3b Entering and Storing Your Data
			19-3c Inspecting, Cleaning, and Summarizing Your Data
		19-4 Econometric Analysis
		19-5 Writing an Empirical Paper
			19-5a Introduction
			19-5b Conceptual (or Theoretical) Framework
			19-5c Econometric Models and Estimation Methods
			19-5d The Data
			19-5e Results
			19.5f Conclusions
			19-5g Style Hints
		Summary
		Key Terms
		Sample Empirical Projects
		List of Journals
		Data Sources
Math Refresher A Basic Mathematical Tools
	A-1 The Summation Operator and Descriptive Statistics
	A-2 Properties of Linear Functions
	A-3 Proportions and Percentages
	A-4 Some Special Functions and Their Properties
		A-4a Quadratic Functions
		A-4b The Natural Logarithm
		A-4c The Exponential Function
	A-5 Differential Calculus
		Summary
		Key Terms
		Problems
Math Refresher B Fundamentals of Probability
	B-1 Random Variables and Their Probability Distributions
		B-1a Discrete Random Variables
		B-1b Continuous Random Variables
	B-2 Joint Distributions, Conditional Distributions, and Independence
		B-2a Joint Distributions and Independence
		B-2b Conditional Distributions
	B-3 Features of Probability Distributions
		B-3a A Measure of Central Tendency: The Expected Value
		B-3b Properties of Expected Values
		B-3c Another Measure of Central Tendency: The Median
		B-3d Measures of Variability: Variance and Standard Deviation
		B-3e Variance
		B-3f Standard Deviation
		B-3g Standardizing a Random Variable
		B-3h Skewness and Kurtosis
	B-4 Features of Joint and Conditional Distributions
		B-4a Measures of Association: Covariance and Correlation
		B-4b Covariance
		B-4c Correlation Coefficient
		B-4d Variance of Sums of Random Variables
		B-4e Conditional Expectation
		B-4f Properties of Conditional Expectation
		B-4g Conditional Variance
	B-5 The Normal and Related Distributions
		B-5a The Normal Distribution
		B-5b The Standard Normal Distribution
		B-5c Additional Properties of the Normal Distribution
		B-5d The Chi-Square Distribution
		B-5e The t Distribution
		B-5f The F Distribution
	Summary
	Key Terms
	Problems
Math Refresher C Fundamentals of Mathematical Statistics
	C-1 Populations, Parameters, and Random Sampling
		C-1a Sampling
	C-2 Finite Sample Properties of Estimators
		C-2a Estimators and Estimates
		C-2b Unbiasedness
		C-2c The Sampling Variance of Estimators
		C-2d Efficiency
	C-3 Asymptotic or Large Sample Properties of Estimators
		C-3a Consistency
		C-3b Asymptotic Normality
	C-4 General Approaches to Parameter Estimation
		C-4a Method of Moments
		C-4b Maximum Likelihood
		C-4c Least Squares
	C-5 Interval Estimation and Confidence Intervals
		C-5a The Nature of Interval Estimation
		C-5b Confidence Intervals for the Mean from a Normally Distributed Population
		C-5c A Simple Rule of Thumb for a 95% Confidence Interval
		C-5d Asymptotic Confidence Intervals for Nonnormal Populations
	C-6 Hypothesis Testing
		C-6a Fundamentals of Hypothesis Testing
		C-6b Testing Hypotheses about the Mean in a Normal Population
		C-6c Asymptotic Tests for Nonnormal Populations
		C-6d Computing and Using p-Values
		C-6e The Relationship between Confidence Intervals and Hypothesis Testing
		C-6f Practical versus Statistical Significance
	C-7 Remarks on Notation
	Summary
	Key Terms
	Problems
Advanced Treatment D Summary of Matrix Algebra
	D-1 Basic Definitions
	D-2 Matrix Operations
		D-2a Matrix Addition
		D-2b Scalar Multiplication
		D-2c Matrix Multiplication
		D-2d Transpose
		D-2e Partitioned Matrix Multiplication
		D-2f Trace
		D-2g Inverse
	D-3 Linear Independence and Rank of a Matrix
	D-4 Quadratic Forms and Positive Definite Matrices
	D-5 Idempotent Matrices
	D-6 Differentiation of Linear and Quadratic Forms
	D-7 Moments and Distributions of Random Vectors
		D-7a Expected Value
		D-7b Variance-Covariance Matrix
		D-7c Multivariate Normal Distribution
		D-7d Chi-Square Distribution
		D-7e t Distribution
		D-7f F Distribution
	Summary
	Key Terms
	Problems
Advanced Treatment E The Linear Regression Model in Matrix Form
	E-1 The Model and Ordinary Least Squares Estimation
		E-1a The Frisch-Waugh Theorem
	E-2 Finite Sample Properties of OLS
	E-3 Statistical Inference
	E-4 Some Asymptotic Analysis
		E-4a Wald Statistics for Testing Multiple Hypotheses
	Summary
	Key Terms
	Problems
Answers to Going Further Questions
Statistical Tables
References
Glossary
Index




نظرات کاربران