دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 7
نویسندگان: Jeffrey M. Wooldridge
سری: MindTap Course List
ISBN (شابک) : 1337558869, 9781337558860
ناشر: Cengage Learning
سال نشر: 2019
تعداد صفحات: 849
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Introductory Econometrics: A Modern Approach (MindTap Course List) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اقتصادسنجی مقدماتی: رویکردی مدرن () نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
با اقتصاد مقدماتی Wooldridge: A MODERN Approach، 7E، درک درستی از اینکه چگونه اقتصادسنجی می تواند به سؤالات امروز در تجارت، ارزیابی سیاست و پیش بینی پاسخ دهد، به دست آورید. برخلاف متون سنتی، رویکرد عملی و در عین حال حرفهای این کتاب نشان میدهد که چگونه اقتصاد سنجی از مجموعهای از ابزارهای انتزاعی فراتر رفته و برای پاسخ دادن به سؤالات در رشتههای مختلف مفید واقع شده است. نویسنده ارائه کتاب را حول نوع داده های مورد تجزیه و تحلیل با رویکردی نظام مند سازماندهی کرده است که تنها مفروضات مورد نیاز را معرفی می کند. این امر درک مطالب را آسانتر میکند و در نهایت منجر به شیوههای اقتصاد سنجی بهتر میشود. مملو از برنامه های کاربردی مرتبط، متن بیش از 100 مجموعه داده در قالب های مختلف را در خود جای داده است. بهروزرسانیها آخرین پیشرفتها را در این زمینه، از جمله پیشرفتهای اخیر در بهاصطلاح «اثرات علّی» یا «اثرات درمانی» معرفی میکنند تا درک کاملی از تأثیر و اهمیت اقتصاد سنجی امروز ارائه کنند.
Gain an understanding of how econometrics can answer today's questions in business, policy evaluation and forecasting with Wooldridge's INTRODUCTORY ECONOMETRICS: A MODERN APPROACH, 7E. Unlike traditional texts, this book's practical, yet professional, approach demonstrates how econometrics has moved beyond a set of abstract tools to become genuinely useful for answering questions across a variety of disciplines. The author has organized the book's presentation around the type of data being analyzed with a systematic approach that only introduces assumptions as they are needed. This makes the material easier to understand and, ultimately, leads to better econometric practices. Packed with relevant applications, the text incorporates more than 100 data sets in different formats. Updates introduce the latest developments in the field, including the recent advances in the so-called �causal effects� or �treatment effects," to provide a complete understanding of the impact and importance of econometrics today.
Brief Contents Contents Chapter 1: The Nature of Econometrics and Economic Data 1-1 What Is Econometrics? 1-2 Steps in Empirical Economic Analysis 1-3 The Structure of Economic Data 1-3a Cross-Sectional Data 1-3b Time Series Data 1-3c Pooled Cross Sections 1-3d Panel or Longitudinal Data 1-3e A Comment on Data Structures 1-4 Causality, Ceteris Paribus, and Counterfactual Reasoning Summary Key Terms Problems Computer Exercises Part 1: Regression Analysis with Chapter 2: The Simple Regression Model 2-1 Definition of the Simple Regression Model 2-2 Deriving the Ordinary Least Squares Estimates 2-2a A Note on Terminology 2-3 Properties of OLS on Any Sample of Data 2-3a Fitted Values and Residuals 2-3b Algebraic Properties of OLS Statistics 2-3c Goodness-of-Fit 2-4 Units of Measurement and Functional Form 2-4a The Effects of Changing Units of Measurement on OLS Statistics 2-4b Incorporating Nonlinearities in Simple Regression 2-4c The Meaning of “Linear” Regression 2-5 Expected Values and Variances of the OLS Estimators 2-5a Unbiasedness of OLS 2-5b Variances of the OLS Estimators 2-5c Estimating the Error Variance 2-6 Regression through the Origin and Regression on a Constant 2-7 Regression on a Binary Explanatory Variable 2-7a Counterfactual Outcomes, Causality, and Policy Analysis Summary Key Terms Problems Computer Exercises Chapter 3: Multiple Regression Analysis: Estimation 3-1 Motivation for Multiple Regression 3-1a The Model with Two Independent Variables 3-1b The Model with k Independent Variables 3-2 Mechanics and Interpretation of Ordinary Least Squares 3-2a Obtaining the OLS Estimates 3-2b Interpreting the OLS Regression Equation 3-2c On the Meaning of “Holding Other Factors Fixed” in Multiple Regression 3-2d Changing More Than One Independent Variable Simultaneously 3-2e OLS Fitted Values and Residuals 3-2f A “Partialling Out” Interpretation of Multiple Regression 3-2g Comparison of Simple and Multiple Regression Estimates 3-2h Goodness-of-Fit 3-2i Regression through the Origin 3-3 The Expected Value of the OLS Estimators 3-3a Including Irrelevant Variables in a Regression Model 3-3b Omitted Variable Bias: The Simple Case 3-3c Omitted Variable Bias: More General Cases 3-4 The Variance of the OLS Estimators 3-4a The Components of the OLS Variances: Multicollinearity 3-4b Variances in Misspecified Models 3-4c Estimating s2: Standard Errors of the OLS Estimators 3-5 Efficiency of OLS: The Gauss-Markov Theorem 3-6 Some Comments on the Language of Multiple Regression Analysis 3-7 Several Scenarios for Applying Multiple Regression 3-7a Prediction 3-7b Efficient Markets 3-7c Measuring the Tradeoff between Two Variables 3-7d Testing for Ceteris Paribus Group Differences 3-7e Potential Outcomes, Treatment Effects, and Policy Analysis Summary Key Terms Problems Computer Exercises Chapter 4: Multiple Regression Analysis: Inference 4-1 Sampling Distributions of the OLS Estimators 4-2 Testing Hypotheses about a Single Population Parameter: The t Test 4-2a Testing against One-Sided Alternatives 4-2b Two-Sided Alternatives 4-2c Testing Other Hypotheses about bj 4-2d Computing p-Values for t Tests 4-2e A Reminder on the Language of Classical Hypothesis Testing 4-2f Economic, or Practical, versus Statistical Significance 4-3 Confidence Intervals 4-4 Testing Hypotheses about a Single Linear Combination of the Parameters 4-5 Testing Multiple Linear Restrictions: The F Test 4-5a Testing Exclusion Restrictions 4-5b Relationship between F and t Statistics 4-5c The R-Squared Form of the F Statistic 4-5d Computing p-values for F Tests 4-5e The F Statistic for Overall Significance of a Regression 4-5f Testing General Linear Restrictions 4-6 Reporting Regression Results 4-7 Revisiting Causal Effects and Policy Analysis Summary Key Terms Problems Computer Exercises Chapter 5: Multiple Regression Analysis: OLS Asymptotics 5-1 Consistency 5-1a Deriving the Inconsistency in OLS 5-2 Asymptotic Normality and Large Sample Inference 5-2a Other Large Sample Tests: The Lagrange Multiplier Statistic 5-3 Asymptotic Efficiency of OLS Summary Key Terms Problems Computer Exercises Chapter 6: Multiple Regression Analysis: Further Issues 6-1 Effects of Data Scaling on OLS Statistics 6-1a Beta Coefficients 6-2 More on Functional Form 6-2a More on Using Logarithmic Functional Forms 6-2b Models with Quadratics 6-2c Models with Interaction Terms 6-2d Computing Average Partial Effects 6-3 More on Goodness-of-Fit and Selection of Regressors 6-3a Adjusted R-Squared 6-3b Using Adjusted R-Squared to Choose between Nonnested Models 6-3c Controlling for Too Many Factors in Regression Analysis 6-3d Adding Regressors to Reduce the Error Variance 6-4 Prediction and Residual Analysis 6.4 a Confidence Intervals for Predictions 6-4b Residual Analysis 6-4c Predicting y When log(y) Is the Dependent Variable 6-4d Predicting y When the Dependent Variable Is log(y) Summary Key Terms Problems Computer Exercises Chapter 7: Multiple Regression Analysis with Qualitative Information 7-1 Describing Qualitative Information 7-2 A Single Dummy Independent Variable 7-2a Interpreting Coefficients on Dummy Explanatory Variables When the Dependent Variable Is log(y) 7-3 Using Dummy Variables for Multiple Categories 7-3a Incorporating Ordinal Information by Using Dummy Variables 7-4 Interactions Involving Dummy Variables 7-4a Interactions among Dummy Variables 7-4b Allowing for Different Slopes 7-4c Testing for Differences in Regression Functions across Groups 7-5 A Binary Dependent Variable: The Linear Probability Model 7-6 More on Policy Analysis and Program Evaluation 7-6a Program Evaluation and Unrestricted Regression Adjustment 7-7 Interpreting Regression Results with Discrete Dependent Variables Summary Key Terms Problems Computer Exercises Chapter 8: Heteroskedasticity 8-1 Consequences of Heteroskedasticity for OLS 8-2 Heteroskedasticity-Robust Inference after OLS Estimation 8-2a Computing Heteroskedasticity-Robust LM Tests 8-3 Testing for Heteroskedasticity 8-3a The White Test for Heteroskedasticity 8-4 Weighted Least Squares Estimation 8-4a The Heteroskedasticity Is Known up to a Multiplicative Constant 8-4b The Heteroskedasticity Function Must Be Estimated: Feasible GLS 8-4c What If the Assumed Heteroskedasticity Function Is Wrong? 8-4d Prediction and Prediction Intervals with Heteroskedasticity 8-5 The Linear Probability Model Revisited Summary Key Terms Problems Computer Exercises Chapter 9: More on Specification and Data Issues 9-1 Functional Form Misspecification 9-1a RESET as a General Test for Functional Form Misspecification 9-1b Tests against Nonnested Alternatives 9-2 Using Proxy Variables for Unobserved Explanatory Variables 9-2a Using Lagged Dependent Variables as Proxy Variables 9-2b A Different Slant on Multiple Regression 9-2c Potential Outcomes and Proxy Variables 9-3 Models with Random Slopes 9-4 Properties of OLS under Measurement Error 9-4a Measurement Error in the Dependent Variable 9-4b Measurement Error in an Explanatory Variable 9-5 Missing Data, Nonrandom Samples, and Outlying Observations 9-5a Missing Data 9-5b Nonrandom Samples 9-5c Outliers and Influential Observations 9-6 Least Absolute Deviations Estimation Summary Key Terms Problems Computer Exercises Part 2: Regression Analysis with Time Series Data Chapter 10: Basic Regression Analysis with Time Series Data 10-1 The Nature of Time Series Data 10-2 Examples of Time Series Regression Models 10-2a Static Models 10-2b Finite Distributed Lag Models 10-2c A Convention about the Time Index 10-3 Finite Sample Properties of OLS under Classical Assumptions 10-3a Unbiasedness of OLS 10-3b The Variances of the OLS Estimators and the Gauss-Markov Theorem 10-3c Inference under the Classical Linear Model Assumptions 10-4 Functional Form, Dummy Variables, and Index Numbers 10-5 Trends and Seasonality 10-5a Characterizing Trending Time Series 10-5b Using Trending Variables in Regression Analysis 10-5c A Detrending Interpretation of Regressions with a Time Trend 10-5d Computing R-Squared When the Dependent Variable Is Trending 10-5e Seasonality Summary Key Terms Problems Computer Exercises Chapter 11: Further Issues in Using OLS with Time Series Data 11-1 Stationary and Weakly Dependent Time Series 11-1a Stationary and Nonstationary Time Series 11-1b Weakly Dependent Time Series 11-2 Asymptotic Properties of OLS 11-3 Using Highly Persistent Time Series in Regression Analysis 11-3a Highly Persistent Time Series 11-3b Transformations on Highly Persistent Time Series 11-3c Deciding Whether a Time Series Is I(1) 11-4 Dynamically Complete Models and the Absence of Serial Correlation 11-5 The Homoskedasticity Assumption for Time Series Models Summary Key Terms Problems Computer Exercises Chapter 12: Serial Correlation and Heteroskedasticity in Time Series Regressions 12-1 Properties of OLS with Serially Correlated Errors 12-1a Unbiasedness and Consistency 12-1b Efficiency and Inference 12-1c Goodness-of-Fit 12-1d Serial Correlation in the Presence of Lagged Dependent Variables 12-2 Serial Correlation–Robust Inference after OLS 12-3 Testing for Serial Correlation 12-3a A t Test for AR(1) Serial Correlation with Strictly Exogenous Regressors 12-3b The Durbin-Watson Test under Classical Assumptions 12-3c Testing for AR(1) Serial Correlation without Strictly Exogenous Regressors 12-3d Testing for Higher-Order Serial Correlation 12-4 Correcting for Serial Correlation with Strictly Exogenous Regressors 12-4a Obtaining the Best Linear Unbiased Estimator in the AR(1) Model 12-4b Feasible GLS Estimation with AR(1) Errors 12-4c Comparing OLS and FGLS 12-4d Correcting for Higher-Order Serial Correlation 12-4e What if the Serial Correlation Model Is Wrong? 12-5 Differencing and Serial Correlation 12-6 Heteroskedasticity in Time Series Regressions 12-6a Heteroskedasticity-Robust Statistics 12-6b Testing for Heteroskedasticity 12-6c Autoregressive Conditional Heteroskedasticity 12-6d Heteroskedasticity and Serial Correlation in Regression Models Summary Key Terms Problems Computer Exercises Part 3: Advanced Topics Chapter 13: Pooling Cross Sections across Time: Simple Panel Data Methods 13-1 Pooling Independent Cross Sections across Time 13-1a The Chow Test for Structural Change across Time 13-2 Policy Analysis with Pooled Cross Sections 13-2a Adding an Additional Control Group 13-2b A General Framework for Policy Analysis with Pooled Cross Sections 13-3 Two-Period Panel Data Analysis 13-3a Organizing Panel Data 13-4 Policy Analysis with Two-Period Panel Data 13-5 Differencing with More Than Two Time Periods 13-5a Potential Pitfalls in First Differencing Panel Data Summary Key Terms Problems Computer Exercises Chapter 14: Advanced Panel Data Methods 14-1 Fixed Effects Estimation 14-1a The Dummy Variable Regression 14-1b Fixed Effects or First Differencing? 14-1c Fixed Effects with Unbalanced Panels 14-2 Random Effects Models 14-2a Random Effects or Pooled OLS? 14-2b Random Effects or Fixed Effects? 14-3 The Correlated Random Effects Approach 14-3a Unbalanced Panels 14-4 General Policy Analysis with Panel Data 14-4a Advanced Considerations with Policy Analysis 14-5 Applying Panel Data Methods to Other Data Structures Summary Key Terms Problems Computer Exercises Chapter 15: Instrumental Variables Estimation and Two-Stage Least Squares 15-1 Motivation: Omitted Variables in a Simple Regression Model 15-1a Statistical Inference with the IV Estimator 15-1b Properties of IV with a Poor Instrumental Variable 15-1c Computing R-Squared after IV Estimation 15-2 IV Estimation of the Multiple Regression Model 15-3 Two-Stage Least Squares 15-3a A Single Endogenous Explanatory Variable 15-3b Multicollinearity and 2SLS 15-3c Detecting Weak Instruments 15-3d Multiple Endogenous Explanatory Variables 15-3e Testing Multiple Hypotheses after 2SLS Estimation 15-4 IV Solutions to Errors-in-Variables Problems 15-5 Testing for Endogeneity and Testing Overidentifying Restrictions 15-5a Testing for Endogeneity 15-5b Testing Overidentification Restrictions 15-6 2SLS with Heteroskedasticity 15-7 Applying 2SLS to Time Series Equations 15-8 Applying 2SLS to Pooled Cross Sections and Panel Data Summary Key Terms Problems Computer Exercises Chapter 16: Simultaneous Equations Models 16-1 The Nature of Simultaneous Equations Models 16-2 Simultaneity Bias in OLS 16-3 Identifying and Estimating a Structural Equation 16-3a Identification in a Two-Equation System 16-3b Estimation by 2SLS 16-4 Systems with More Than Two Equations 16-4a Identification in Systems with Three or More Equations 16-4b Estimation 16-5 Simultaneous Equations Models with Time Series 16-6 Simultaneous Equations Models with Panel Data Summary Key Terms Problems Computer Exercises Chapter 17: Limited Dependent Variable Models and Sample Selection Corrections 17-1 Logit and Probit Models for Binary Response 17-1a Specifying Logit and Probit Models 17-1b Maximum Likelihood Estimation of Logit and Probit Models 17-1c Testing Multiple Hypotheses 17-1d Interpreting the Logit and Probit Estimates 17-2 The Tobit Model for Corner Solution Responses 17-2a Interpreting the Tobit Estimates 17-2b Specification Issues in Tobit Models 17-3 The Poisson Regression Model 17-4 Censored and Truncated Regression Models 17-4a Censored Regression Models 17-4b Truncated Regression Models 17-5 Sample Selection Corrections 17-5a When Is OLS on the Selected Sample Consistent? 17-5b Incidental Truncation Summary Key Terms Problems Computer Exercises Chapter 18: Advanced Time Series Topics 18-1 Infinite Distributed Lag Models 18-1a The Geometric (or Koyck) Distributed Lag Model 18-1b Rational Distributed Lag Models 18-2 Testing for Unit Roots 18-3 Spurious Regression 18-4 Cointegration and Error Correction Models 18-4a Cointegration 18-4b Error Correction Models 18-5 Forecasting 18-5a Types of Regression Models Used for Forecasting 18-5b One-Step-Ahead Forecasting 18-5c Comparing One-Step-Ahead Forecasts 18-5d Multiple-Step-Ahead Forecasts 18-5e Forecasting Trending, Seasonal, and Integrated Processes Summary Key Terms Problems Computer Exercises Chapter 19: Carrying Out an Empirical Project 19-1 Posing a Question 19-2 Literature Review 19-3 Data Collection 19-3a Deciding on the Appropriate Data Set 19-3b Entering and Storing Your Data 19-3c Inspecting, Cleaning, and Summarizing Your Data 19-4 Econometric Analysis 19-5 Writing an Empirical Paper 19-5a Introduction 19-5b Conceptual (or Theoretical) Framework 19-5c Econometric Models and Estimation Methods 19-5d The Data 19-5e Results 19.5f Conclusions 19-5g Style Hints Summary Key Terms Sample Empirical Projects List of Journals Data Sources Math Refresher A Basic Mathematical Tools A-1 The Summation Operator and Descriptive Statistics A-2 Properties of Linear Functions A-3 Proportions and Percentages A-4 Some Special Functions and Their Properties A-4a Quadratic Functions A-4b The Natural Logarithm A-4c The Exponential Function A-5 Differential Calculus Summary Key Terms Problems Math Refresher B Fundamentals of Probability B-1 Random Variables and Their Probability Distributions B-1a Discrete Random Variables B-1b Continuous Random Variables B-2 Joint Distributions, Conditional Distributions, and Independence B-2a Joint Distributions and Independence B-2b Conditional Distributions B-3 Features of Probability Distributions B-3a A Measure of Central Tendency: The Expected Value B-3b Properties of Expected Values B-3c Another Measure of Central Tendency: The Median B-3d Measures of Variability: Variance and Standard Deviation B-3e Variance B-3f Standard Deviation B-3g Standardizing a Random Variable B-3h Skewness and Kurtosis B-4 Features of Joint and Conditional Distributions B-4a Measures of Association: Covariance and Correlation B-4b Covariance B-4c Correlation Coefficient B-4d Variance of Sums of Random Variables B-4e Conditional Expectation B-4f Properties of Conditional Expectation B-4g Conditional Variance B-5 The Normal and Related Distributions B-5a The Normal Distribution B-5b The Standard Normal Distribution B-5c Additional Properties of the Normal Distribution B-5d The Chi-Square Distribution B-5e The t Distribution B-5f The F Distribution Summary Key Terms Problems Math Refresher C Fundamentals of Mathematical Statistics C-1 Populations, Parameters, and Random Sampling C-1a Sampling C-2 Finite Sample Properties of Estimators C-2a Estimators and Estimates C-2b Unbiasedness C-2c The Sampling Variance of Estimators C-2d Efficiency C-3 Asymptotic or Large Sample Properties of Estimators C-3a Consistency C-3b Asymptotic Normality C-4 General Approaches to Parameter Estimation C-4a Method of Moments C-4b Maximum Likelihood C-4c Least Squares C-5 Interval Estimation and Confidence Intervals C-5a The Nature of Interval Estimation C-5b Confidence Intervals for the Mean from a Normally Distributed Population C-5c A Simple Rule of Thumb for a 95% Confidence Interval C-5d Asymptotic Confidence Intervals for Nonnormal Populations C-6 Hypothesis Testing C-6a Fundamentals of Hypothesis Testing C-6b Testing Hypotheses about the Mean in a Normal Population C-6c Asymptotic Tests for Nonnormal Populations C-6d Computing and Using p-Values C-6e The Relationship between Confidence Intervals and Hypothesis Testing C-6f Practical versus Statistical Significance C-7 Remarks on Notation Summary Key Terms Problems Advanced Treatment D Summary of Matrix Algebra D-1 Basic Definitions D-2 Matrix Operations D-2a Matrix Addition D-2b Scalar Multiplication D-2c Matrix Multiplication D-2d Transpose D-2e Partitioned Matrix Multiplication D-2f Trace D-2g Inverse D-3 Linear Independence and Rank of a Matrix D-4 Quadratic Forms and Positive Definite Matrices D-5 Idempotent Matrices D-6 Differentiation of Linear and Quadratic Forms D-7 Moments and Distributions of Random Vectors D-7a Expected Value D-7b Variance-Covariance Matrix D-7c Multivariate Normal Distribution D-7d Chi-Square Distribution D-7e t Distribution D-7f F Distribution Summary Key Terms Problems Advanced Treatment E The Linear Regression Model in Matrix Form E-1 The Model and Ordinary Least Squares Estimation E-1a The Frisch-Waugh Theorem E-2 Finite Sample Properties of OLS E-3 Statistical Inference E-4 Some Asymptotic Analysis E-4a Wald Statistics for Testing Multiple Hypotheses Summary Key Terms Problems Answers to Going Further Questions Statistical Tables References Glossary Index